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Abstract

Even infants understand other agents can have partial
observability of the world, and show varying degrees
of uncertainty about the knowledge and preferences of
others. This work models people’s inference of another
agent’s preference and knowledge given limited percep-
tual access, as measured by their surprise response. We
propose POPKI (Physically-grounded Observation, Pref-
erence, and Knowledge Inference), a Bayesian inverse-
planning method that models graded surprise in the in-
ference of preference, knowledge, and perceptual access
in rich 3D environments. To test our model, we extended
the AGENT dataset to trials that probe preference, knowl-
edge, and perceptual access. Experimental results show
POPKI replicates humans’ varying degrees of surprise
when judging the behavior of agents under different vis-
ibility conditions. These results suggest that reasoning
about how agents plan in imagined physical states ac-
cording to their knowledge under limited observability is
key to reverse-engineering human-like uncertainty judg-
ments in psychological reasoning tasks.
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Introduction

A deep understanding of human mental states is essential
for effectively integrating machine agents into human-centric
environments. Previous works have investigated what type
of machine models can reverse-engineer human-level Theory
of Mind (ToM). Most notably, recent ToM benchmarks such
as the Baby Intuitions Benchmark (Gandhi et al., 2022) and
AGENT (Shu et al., 2021) offer a wide set of tasks that probe
how much a model grasps fundamental ToM principles, based
on the influential Violation of Expectation paradigm used in
developmental studies (e.g., Woodward, 1998; Csibra et al.,
2003; Liu et al., 2017). Prior research on modeling surprise
in these developmentally inspired benchmarks has focused
on situations where agents have complete visibility of their
surroundings. However, when agents lack full observability,
human surprise judgments reflect graded uncertainty (Luo &
Baillargeon, 2008). It remains unclear how we can model such
graded surprise judgments.

We propose POPKI (Physically-grounded Observation,
Preference, and Knowledge Inference), a Bayesian inverse-
planning approach that models graded surprise in rich 3D en-
vironments by jointly inferring preferences, knowledge, and
perceptual access. Our experimental results show POPKI
replicates the varying degrees of human surprise when ob-
serving the behavior of agents under different conditions of
perceptual access, unlike a strong neural network baseline.

AGENT+ with Perceptual Access Trials

The original AGENT benchmark (Shu et al., 2021) only de-
picted agents with full perceptual access. Following Luo &
Baillargeon (2008), we expanded AGENT to create AGENT+

(I) Familiarization (Il) Test

Surprising

Expected

Type 1

Type 2

Transparent
Barrier

Type 3

Equal access

Limited access

Figure 1: Overview of the perceptual access trials. One of the
barriers in the Type 2 familiarization video is transparent. We
show two frames for the Type 3 familiarization video because
the agent first looks at both objects (equal access) before the
barriers drop (limited access).

with three new trial types that test limited perceptual access
(Figure 1). Each trial begins with a familiarization video that
displays an agent’s preference for a particular object, followed
by a test video in which the agent either chooses the same ob-
ject as before or a different one. We refer to the former trials
as 'expected’ and the latter as 'surprising.

In Type 1 stimuli, the agent sees both objects during famil-
iarization, giving it full knowledge of their locations. In Type
2, the agent only sees one object, limiting its knowledge. In
such a case, the agent may be locally selecting a globally dis-
preferred object, since it does not know another one exists. In
Type 3, the agent initially sees both objects, but one becomes
obscured by barriers, altering its perceptual access but not its
knowledge. In all test videos across stimuli types, the agent
can see both objects.

Computational Model

POPKI jointly infers preference, knowledge, and perceptual
access as shown in Figure 2. The POPKI model is built in the
probabilistic programming language Gen (Cusumano-Towner
et al., 2019). It leverages PyBullet as its physics engine, and
RRT* (Karaman & Frazzoli, 2011) as its planner. Unlike the
Bayesian inverse-planning model used to solve the tasks in
the original AGENT benchmark, POPKI introduces partial ob-
servation o' ~ O(o|s") given a state s’ at time #, and knowl-
edge inference k’(g) € 0,1 of a goal object g € G (G is the
set of goal objects). k’(g) = 1 means the agent knows g ex-
ists.

Given the familiarization video, represented by a trajectory
of states s" at each step (I'fum = s'T), we conduct a simul-
taneous inference of knowledge k', perceptual access o, and
agent parameters ® = (R, C) that include the reward R and
the cost C. We also infer the physics parameters & that de-
fine the physical characteristics of the physics engine. The



Particles of sampled percept, knowledge,
and physics and agent parameters
Particle 1 at ime 1 e

Planning and Sampled
physical simulation  trajectories

Physics Engine

N - + Planner
Physics Engine

+ Planner

Figure 2: Overview of the POPKI model. We approximate
the physical scene in a physics engine using extracted object
entities (with ground-truth annotations). For each particle hy-
pothesis, we sample an agent trajectory conditioned on that

hypothesis.
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Figure 3: Surprise margin comparisons between humans and
models. (a) Averaged surprise margin for each type (error
bars show standard errors). (b) Correlation between humans
and ours. (c) Correlation between humans and ToMnet-G.

inference is formulated as:

P(®,0|Tm) o< Z P(SLT‘kO:T7R,C7CI))P(k1:T|01:T’kO)

KO:T ol:T

-P(o"T[s"T)P(K?)P(R)P(C). (1)

In order to compute the likelihood of a trajectory given a spe-
cific hypothesis, we use a two-step process. First, we simu-
late the trajectory based on the imagined environment, con-
structed from the current assumed knowledge. Then, at each
step of this trajectory, we assess the likelihood using a Gaus-
sian distribution. In this distribution, the mean corresponds
to the trajectory’s coordinate at that specific step, while the
standard deviation—a constant manually set to match the
data—accounts for minor deviations from the projected path.

We use Sequential Monte Carlo to update the knowledge,
perceptual access, and preference inference at each step. We
maintain a set of particles that each contain a hypothesis of
knowledge, perceptual access, and the physics and agent pa-
rameters. We use uniform priors for R and C, and a Bernoulli
prior for k° with the P(knowing an unobserved goal) at 0.5.

For each test video, we measure surprise using the ex-
pected log-likelihood of observing the agent trajectory in
the test environment with respect to the posterior distri-
bution of ® and ® inferred from the familiarization video:
Ep o[log P(Tiest| P, ®)] , where

P(Ttest| P, ®) = Z P(SI:T|kO:T,R7C,CI))
kO:T,Ol:T (2)

.P(klzT|01:T7k0)P(01:T|s1:T).

Results

Human Experiment We recruited 84 participants (mean age
= 39.8; 65 female) on Prolific to judge 48 trials (24 pairs of
surprising and expected trials). People rated how ‘surprising’
an agent’s behavior was in a test video on a scale from 0 to
100. Each trial received ratings from 10 participants. The
study was approved by an institutional review board.

Baseline We adopt ToMnet (Rabinowitz et al., 2018) as a
baseline, specifically the extended model ToMnet-G (Shu et
al., 2021), which employs a graph-NN to encode states of
entities that appear in the videos. ToMnet-G is trained on a
dataset of 360 trials from the new perceptual access scenario.

Our Model Prior work (Gandhi et al., 2022; Shu et al., 2021;
Zhi-Xuan et al., 2022) only evaluated whether the surprising
test video receives a higher surprise rating than its expected
counterpart. Here, we further examine the surprise margin as
an indicator of uncertainty. Formally, we define ™ and r~ to
be the surprise ratings for the paired surprising and expected
test videos, respectively. The surprise margin is calculated as
¥+ —r~. Note that surprise ratings were standardized first, fol-
lowing prior works (e.g., Smith et al., 2019; Shu et al., 2021).
We standardize our model scores between pairs of surprising
and expected trials, ensuring that the surprise margin reflects
the surprise rating within trials without adjusting for other sur-
prise margins from other trials of the same type. This cali-
bration method explains the consistent surprise margin of ap-
proximately 2.0 for trial types 1 and 3 observed in our model in
Figure 3(b). This approach does not compromise the robust-
ness of our model’s outcomes.

Figure 3(a) shows that the average surprise margin, based
on human ratings, is significantly lower for Type 2 compared
to Type 1 and Type 3, consistent with findings in Luo & Bail-
largeon (2008). Our POPKI model’s surprise margins show
similar trends. By contrast, ToMnet-G’s surprise margins for
the three types do not exhibit a weaker surprise in Type 2 tri-
als. In Figure 3(bc), we show the surprise margin for each
paired trial. The correlation between our model’s surprise
judgments and human ratings is 0.85 (p < 0.001), markedly
higher than ToMnet-G’s correlation with human ratings (0.38;
p = 0.07). Notably, while ToMnet-G succeeded on the original
AGENT benchmark, it rated the expected test video as more
surprising in 41.7% of all paired trials, contrary to humans and
POPKI , which judged it less surprising on average.

Conclusion

In this work, we expanded the AGENT benchmark by introduc-
ing new trials that evaluate a model’s ability to reason about
goal-directed behavior under limited perceptual access. To
handle these trials, we develop a new model (POPKI ) that se-
quentially models an agent’s knowledge and perceptual state,
combined with a physically grounded generative model of the
agent’s behavior. Our experimental results demonstrate that
POPKI can successfully account for the varying degrees of
surprise that humans exhibit when judging an agent’s actions
under different conditions of perceptual access.
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