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Abstract: 

Reinforcement learning (RL) holds promise for training 
agents in complex environments, but generalization 
remains a key challenge. This study focuses on 
addressing generalization in maze navigation using 
Proximal Policy Optimization (PPO) with transformer-
based models. We develop a custom maze environment 
in Unity 3D and train agents using PPO integrated with 
Transformer XL and Gated Transformer XL architectures. 
Our experiments assess the agents' ability to generalize 
policies to unseen maze configurations, demonstrating 
significant improvements in generalization performance. 
This research contributes to advancing RL for navigation 
tasks. 
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1. Introduction 

In recent years, reinforcement learning (RL) has 
become instrumental in training agents for autonomous 
navigation [1]. However, a significant challenge 
remains: enabling agents to generalize their learned 
policies to unseen maze configurations. To address 
this, we propose integrating transformer-based models 
[2], like Transformer XL (TrXL) and Gated Transformer 
XL (GTrXL), with state-of-the-art RL algorithms, 
specifically Proximal Policy Optimization (PPO) [3]. This 
combination aims to equip agents with the ability to 
generalize effectively across diverse maze layouts. 
Transformer models excel in capturing long-range 
dependencies and abstract spatial representations, 
making them particularly suited for learning navigation 
tasks in complex maze environments. 

2. Background 

Reinforcement learning algorithms have shown 
success in maze navigation, yet struggle with high-
dimensional and partially observable state spaces. 
Transformer-based models, initially developed for 
natural language processing, offer promising solutions. 
Transformer XL (TrXL) by Dai et al. (2019) extends the 
architecture with recurrent mechanisms for long-term 
dependency capture [4]. Gated Transformer XL 

(GTrXL), proposed by Child et al. (2019), enhances 
temporal modeling and representation learning with 
gated recurrent units (GRUs) within transformer blocks 
[5]. Integrating these models with Proximal Policy 
Optimization (PPO) can address these challenges 
effectively. 

3. Problem Formulation  

   In maze navigation tasks, the primary aim is to train 
an agent to navigate complex environments to reach a 
goal state, optimizing a predefined reward signal. The 
challenge lies in the generalization problem, where 
agents struggle to apply learned policies effectively to 
unseen maze configurations. 

Formally, let 𝑆 denote the state space of the maze 
environment, 𝐴 the action space, and 𝑟(𝑠, 𝑎, 𝑠′) the 

reward function, where 𝑠, 𝑠′ ∈ 𝑆 represent states and 

𝑎 ∈ 𝐴 actions taken by the agent. The goal is to learn a 

policy 𝜋( 𝑎 ∣ 𝑠 ) that maximizes the expected cumulative 
reward over a trajectory: 

max
𝜋

𝔼𝜏∼𝜋[𝑅(𝜏)] =  max
𝜋

 𝔼𝜏 [∑ 𝛾𝑡𝑟𝑡

𝑇

𝑡=0

]            (1) 

where 𝜏 = (𝑠0,𝑎0,𝑟0,𝑠1,𝑎1,𝑟1, … ) represents a trajectory, 

and 𝑅(𝜏) is the discounted cumulative reward. 
The generalization challenge emerges when the 
learned policy fails to adapt to unseen maze 
configurations, hindering the agent's performance. 

4. Methodology  

Our approach combines DRL algorithms with 
transformer-based models, specifically TrXL and TrXL, 
to tackle the generalization problem in maze navigation 
tasks. 

Custom Maze Environment: We design a maze 
environment ℇ using Unity 3D, providing agents with 

visual observations 𝑂 and rewards 𝑟(𝑠, 𝑎, 𝑠′) based on 
their navigation performance. 
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Reinforcement Learning Algorithms: We utilize 
Proximal Policy Optimization (PPO) to train agents in 
the maze environment. The objective function for PPO 
is defined as: 

max
𝜃

 𝔼𝜏∼𝜋𝜃
[

𝜋𝜃( 𝑎 ∣ 𝑠 )

𝜋𝜃𝑜𝑙𝑑
( 𝑎 ∣ 𝑠 )

𝐴𝐶𝑙𝑖𝑝(𝜏)]            (2) 

Where 𝜃 are the parameters of the policy network 

𝜋𝜃 , 𝜏 represents a trajectory, and 𝐴𝐶𝑙𝑖𝑝(𝜏) is the clipped 
surrogate objective. 

Transformer-Based Models: To capture long-term 
dependencies and generalize across maze 
configurations, we integrate Transformer XL and Gated 
Transformer XL into our architecture. These models 
utilize self-attention mechanisms to process sequences 
effectively and adapt to various maze topologies. 

Training Procedure: During training, agents interact 
with the environment, collecting experience tuples 
(𝑠, 𝑎, 𝑟, 𝑠′). The policy network parameters are updated 
iteratively using stochastic gradient ascent to maximize 
the expected cumulative reward. 

Evaluation Metrics: We evaluate the agents' 
generalization performance using metrics such as 
success rate 𝑆 and efficiency 𝐸 in navigating unseen 
maze configurations. Success rate is defined as the 
proportion of successful navigation episodes, while 
efficiency measures the average reward taken to reach 
the goal state. 

5. Experiment setup 

  The experimental setup focused on a single, 
dynamically changing maze environment characterized 
by diverse colors and variable sizes, enabling agents to 
learn complex navigation behaviors, including jumping 
over obstacles. Figure 1(a) illustrates the dynamic 
nature of the maze environment. During training, agents 
underwent Proximal Policy Optimization (PPO) training 

with custom reward shaping, leveraging a neural 
network architecture blending convolutional and 
transformer layers. Distributed training techniques were 
employed to expedite learning, utilizing multiple CPU 
cores and GPUs. Training continued until convergence, 
with intermittent evaluations to assess generalization. 
In contrast, testing involved a multitude of distinct maze 
environments to evaluate the agent's adaptability 
across varied scenarios. 

6. Results 

   The evaluation tested TrXL and GTrXL models across 
two scenarios and their variations to assess adaptability 
to maze configurations. 
Scenario 1: Different Wall Colors (Variations: Color 
Swap, Added New Color, Removed Original Colors) 
Scenario 2: Different Wall Size or Position (Variations: 
Wall Swap, Wall Size, Adding New Walls.) 
TrXL and GTrXL were evaluated in maze environments 
with varied configurations (shown in Table 1). While 
TrXL achieved a success rate of 66.67% in scenarios 
with different wall colors (DWC) and 100% in scenarios 
involving changing wall positions (DWP), GTrXL 
exhibited higher success rates of 100% in DWC  

Table 1: Success rate and efficiency. 

Baselines Scenarios Success rate 
(SR) 

Efficiency 

TrXL 
DWC 66.67 % 39.14 % 
DWP 100 % 90.13 % 

GTrXL 
DWC 100 % 83.10 % 
DWP 66.67 % 61.30 % 

scenarios but slightly lower at 66.67% in DWP 
scenarios. In terms of efficiency, GTrXL outperformed 
TrXL in both scenarios, with efficiencies of 83.10% and 
61.30% in DWC and DWP scenarios, respectively, 
compared to TrXL's 39.14% and 90.13%. 

   These results highlight GTrXL's superior adaptability 
to diverse maze layouts, demonstrating its potential for 
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Figure 1: (a) Maze Environment, (b) Episode Reward vs Episode length for all variations, (c) Episode length 

vs Test no. for DWC and DWP, DWC – Different Wall Color, DWP – Different Wall Positions 

 



real-world applications. Handling the complexity of 
unseen scenarios is enhanced by Gated Transformer 
XL (GTrXL) models and will be further explored through 
the integration of chunking and forgetting mechanisms 
to achieve better generalization. 

7. Conclusion 

  Our study demonstrates the effectiveness of 
Transformer XL (TrXL) and Gated Transformer XL 
(GTrXL) models in diverse maze environments. GTrXL 
showed superior efficiency over TrXL, achieving high 
success rates across scenarios. These findings 
underscore the potential of transformer-based models, 
particularly GTrXL, in reinforcement learning 
generalization. Future research may explore 
hyperparameter optimization, meta-learning, and real-
world evaluations to enhance adaptability and 
robustness. Additionally, investigating ensemble 
methods with transformer-based models could improve 
performance in diverse settings. 
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