
An information-theoretic perspective on speed-accuracy trade-offs and set-size
effects

Shuze Liu (shuzeliu@fas.harvard.edu)
PhD Program in Neuroscience, Harvard University, 52 Oxford Street,

Cambridge, MA, USA

Lucy Lai (lucylai@g.harvard.edu)
PhD Program in Neuroscience, Harvard University, 52 Oxford Street,

Cambridge, MA, USA

Samuel J. Gershman (gershman@fas.harvard.edu)
Department of Psychology and Center for Brain Science, Harvard University, 52 Oxford Street,

Cambridge, MA, USA

Bilal A. Bari (bbari@mgh.harvard.edu)
Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street,

Boston, MA, USA



Abstract
Policies, the mappings from states to actions, require
memory. The amount of memory is dictated by the mu-
tual information between states and actions, or the policy
complexity. High-complexity policies preserve state in-
formation and generally lead to greater reward compared
to low-complexity policies, which discard state informa-
tion and require less memory. Under our theory, high-
complexity policies incur a time cost: they take longer
to decode than low-complexity policies. This naturally
gives rise to a speed-accuracy trade-off, in which act-
ing quickly necessitates inaccuracy (via low-complexity
policies) and acting accurately necessitates acting slowly
(via high-complexity policies). Furthermore, the relation-
ship between policy complexity and decoding speed ac-
counts for set-size effects: response times grow as a
function of set size because larger sets require higher
policy complexity. Across two human experiments, we
tested these predictions by manipulating intertrial inter-
vals, environmental regularities, and state set sizes. In all
cases, we found that humans are sensitive to time costs
when modulating policy complexity. Altogether, our the-
ory suggests that policy complexity constraints may un-
derlie some speed-accuracy tradeoff and set-size effects.
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Introduction
The brain has evolved to function under myriad cognitive re-
source constraints. Here, we focus on channel capacity, an
upper bound on the amount of information that can be trans-
mitted across a noisy channel. We model an agent that learns
a policy, π(a|s), a probabilistic mapping from states s to ac-
tions a. For a resource-rational agent, we formalize the cog-
nitive cost as the mutual information between states and ac-
tions, I(S;A), or policy complexity, and assume policies are
subject to a capacity constraint, C, or an upper bound on pol-
icy complexity (Parush, Tishby, & Bergman, 2011; Sims, 2016;
Gershman, 2020; Lai & Gershman, 2021). Shannon’s noisy
channel theorem states that the minimum expected number
of bits to transmit a signal across a noisy information channel
without error is equal to the mutual information. Higher policy
complexity therefore demands more memory. We define the
optimal policy, π∗ = argmaxπ V π subject to I(S;A)≤C, where
V π is the expected reward under policy π. This can be solved
using Lagrange multipliers, leading to the solution π∗(a|s) ∝

exp(βQ(s,a) + logP∗(a)) where Q(s,a) is the expected re-
ward for taking action a in state s and P∗(a) = ∑s π∗(a|s)p(s)
is the optimal marginal action distribution.

The optimal policy takes the form of the familiar softmax
distribution, common in the reinforcement learning literature.
Here, the Lagrange multiplier, β, plays the role of the inverse
temperature parameter. Moreover, β is a function of the pol-
icy complexity: β−1 = dV π

dIπ(S;A) . It is large at high policy com-

plexity and small at low policy complexity. By varying β and

calculating the optimal policy, we can trace out the reward-
complexity frontier, which delimits the maximal trial-averaged
reward obtainable for a given policy complexity (Figure 1A). In
general, high-complexity policies yield more reward per trial
than low-complexity policies. Moreover, low-complexity poli-
cies are dominated by the logP∗(a) term, a form of persever-
ation (state-independent actions) (Lai & Gershman, 2021).

Our formulation up to this point has ignored time costs.
In order to understand why an agent would choose a low-
complexity policy, let us assume states are represented as
codewords through entropy coding, the canonical example of
which is the Huffman code (Huffman, 1952). The Huffman
code corresponds to a binary tree in which leaf nodes cor-
respond to decoded states, where more complex state de-
scriptions necessitate more leaf nodes, and therefore more
bits. If we assume bits are inspected at a constant rate, then
more complex policies take longer to read out to reveal the
decoded action (Hick, 1952). Policies of high complexity ne-
cessitate more bits, and reading out these policies should take
longer, necessitating longer response times (RTs). Moreover,
given that bits are inspected at a constant rate, response times
should be a linear function of policy complexity / description
length, with some offset to reflect motor delay (Figure 1B).

To see how our theory predicts a speed-accuracy trade-off,
let us assume subjects attempt to maximize time-averaged
reward (rewards divided by time) (Balci et al., 2011; Dru-
gowitsch, DeAngelis, Angelaki, & Pouget, 2015). This yields
the relationship in Figure 1C, where we varied the intertrial
interval (ITI). To maximize time-averaged reward, humans
should decrease policy complexity when ITIs are short; al-
though these policies result in less trial-averaged reward, they
increase time-averaged reward because they allow agents
to perform more actions due to smaller decoding time cost.
Moreover, because the optimal policy includes a persevera-
tive term (logP∗(a)), the contribution of perseveration should
be magnified at low policy complexity (low ITIs) because of
the smaller β term. Regarding set-size effects, our theory pre-
dicts that response times should grow as a function of set size
because larger sets require higher policy complexity (i.e., the
policy must encode more states) to maximize time-averaged
reward, which in turn demands longer decoding time.

Methods

We used instrumental learning tasks, where participants
pressed keyboard keys in response to images presented on
a computer monitor.

In Experiment 1 (N = 198), on each trial, participants saw
one of four possible images (states) and pressed one of four
possible keys (actions). We varied the ITI (0s, 0.5s, or 2s)
to modulate the optimal policy complexity (Figure 1C). Fur-
thermore, the experiment was designed so two states shared
the same optimal action a1 (Figure 1D), to test the prediction
that the marginal action distribution, P∗(a), should affect low-
complexity policies more. We first trained participants on all
three ITI conditions (1 min each) to encourage them to learn



the correct state-action mapping. They then completed three
3-minute test blocks, one for each ITI (order randomized).

Experiment 2 (N = 99) consisted of three separate con-
ditions, each with a different number of available states (set
size 2, 4, or 6; order randomized). The action set size was
always 6. Each state had a unique optimal action (Figure 1H).
Like Experiment 1, in each set-size condition, subjects were
trained on the three ITIs (subjects saw 48 training trials/state
to control for learning across set sizes). They then completed
a 3-minute test block with ITI=2s.

After each trial in each experiment, subjects received re-
ward feedback for 0.3s (green outline reporting reward or grey
outline reporting no reward). Hence the total time of a trial
was (RT + feedback time + ITI).

Results
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Figure 1: A) Reward-complexity frontier. B) RT is linear in log
encoded state information. Data from (Collins et al., 2014). C)
Time-averaged reward over policy complexity, assuming linear
RT-to-policy-complexity relationship. D) Experiment 1 reward
structure. E-F) Policy complexity and RT vs. ITI. G) Probabil-
ity of choosing the shared action in states where that action
is suboptimal. H) Experiment 3 reward structure. I-J) Policy
complexity and RT vs. ITI, overlaid with fitted LBA predictions.

Experiment 1: speed-accuracy trade-off

In Experiment 1, we manipulated ITIs to test whether partici-
pants adjust policy complexity to maximize time-averaged re-
ward. Under longer ITIs, we predicted 1) higher policy com-
plexity and 2) slower RTs, as this combination maximizes
time-averaged reward. Because the marginal action distribu-
tion, P(a), contributes less under higher policy complexity, we
predicted 3) decreased perseveration with longer ITIs. To gain

intuition, in the extreme case of policy complexity of 0 where
subjects do not encode the stimuli at all, they should always
pick action a1, since this maximizes reward. We analyzed
the policies for stimuli s3 and s4 to identify the effect of the
marginal action distribution; for these stimuli, under high pol-
icy complexity, a1 should be chosen infrequently since it is not
the reward-maximizing option. However, as policy complexity
decreases and the marginal action distribution has greater in-
fluence on the policy, a1 should be chosen more often, being
overall the best single action at low complexity.

Consistent with our predictions, participants achieved near-
maximal trial-averaged reward as a function of policy complex-
ity. As a function of ITI, they adopted more complex policies
(Figure 1E) and slower RTs (Figure 1F). Furthermore, the
influence of the marginal action distribution decreased with
longer ITIs (Figure 1G). We validated our proposed linear re-
lationship between policy complexity and RT by fitting linear
mixed effects (LME) models, which yielded significant effects
for policy complexity.

Experiment 2: set-size effects
In Experiment 2, we varied the state set size, since larger
set sizes demand higher policy complexity to maximize re-
ward. As predicted, participants increased policy complexity
for larger set sizes, leading to longer RTs (Figure 1I-J).

To compare our theoretical framework with evidence accu-
mulation models that can simultaneously predict choice and
RT across multiple alternatives, we fit a linear ballistic accu-
mulator model (LBA) to our data (Brown & Heathcote, 2008).
The LBA included two mean drift rate parameters: one for the
optimal action, and one for all suboptimal actions. While the
best-fit LBA could capture the increase in policy complexity
as a function of set size, it could not predict the relationship
between RT and set size (Figure 1I-J).

Discussion
Across two experiments, we found that humans are sensitive
to the time costs of decoding policies, and that this single re-
lationship predicted behavior in domains as varied as speed-
accuracy trade-offs and set-size effects. One novel contribu-
tion of our framework is the linear relationship between RT
and policy complexity. The idea that retrieving a policy from
memory incurs a time cost offers an alternative to sequential
sampling models for describing RTs (Forstmann, Ratcliff, &
Wagenmakers, 2016; McDougle & Collins, 2021). Second,
our framework provides a normative interpretation of goal-
directed Q(s,a) and habitual P(a) components of action se-
lection, despite their different units (reward vs. frequency).
The poor LBA fits are likely due to their insensitivity to past
action frequencies in each set size, highlighting the contribu-
tion of both components to behavior.

Finally, by simultaneously accounting for multiple cognitive
constraints (here, time and memory costs), we have unified
several disparate findings. We suggest that concurrently ac-
counting for time and memory costs may provide a normative
basis for other seemingly disparate findings in psychology.
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