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Abstract: 

Understanding the mechanisms supporting domain-
general intelligence is crucial for both cognitive 
neuroscience and artificial intelligence. While human 
fMRI studies have identified a frontoparietal multiple-
demand network that contribute to multiple tasks, it is 
largely unknown whether the human brain supports 
multiple tasks with common electrophysiological 
responses. Here, we recorded magnetoencephalography 
and electroencephalography (MEG/EEG) signals while 
participants completed three different cognitive tasks 
with different content (alphanumeric vs. colour stimuli) 
and cognitive demand (easy vs. hard). After separating 
the oscillatory and the aperiodic components of the 
electrophysiological signals, we used multivariate 
pattern analysis (MVPA) to decode task demand for each 
subtask. We found that both oscillatory and aperiodic 
components could decode task demand for all six 
subtasks. Aperiodic broadband power showed the 
strongest generalisability on coding task demand across 
different subtasks. Source estimation results showed 
distinct spatial patterns for domain-general oscillatory 
and aperiodic components, with the aperiodic 
broadband power overlapping with the frontoparietal 
multiple-demand network. Our findings suggested the 
existence of oscillatory and aperiodic 
electrophysiological mechanisms in support of human 
domain-general cognition, which provides a novel way to 
understand how domain-general intelligence arises and 
might inspire relevant research in the fields of 
neuroscience and artificial intelligence. 
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Introduction 

Building network models that are able to achieve 
good performance across a wide range of tasks is one 
of the key aspirations of artificial intelligence research. 
To implement this goal, a promising way is to establish 
brain-inspired network architectures based on 
theoretical and empirical results from cognitive 
neuroscience research on domain-general intelligence 
(e.g., Achterberg et al., 2023). For decades, many fMRI 
studies have shown a similar set of frontoparietal 
regions are commonly involved in supporting domain-
general cognition (Cole & Schneider, 2007; Duncan & 
Owen, 2000). We refer to this widely distributed 
domain-general system as the multiple-demand (MD) 
network (Assem, Glasser, Van Essen, & Duncan, 2020; 
Duncan, 2010). Despite these findings in the fMRI, 
however, it is largely unknown about how the human 
brain supports domain-general cognition with 
electrophysiological signals such as oscillatory and/or 
aperiodic activity. To address this question, this study 
recorded neural signals using combined MEG/EEG 
when participants were doing three different cognitive 
tasks with different contents and demands and 
examined whether any oscillatory and/or aperiodic 

signals show domain-generality across all these 
subtasks. 

Methods 

Participants We analysed data from 43 participants 
recruited from the local community and the online 
participant database at the University of Cambridge. 

Task design We used three cognitive tasks (working 
memory task, WM; switching task, SWIT; and multi-
source interference task, MSIT) with different demands 
(hard/easy) and different stimuli contents 
(alphanumeric/colour). Behavioural results confirmed 
that participants performed faster and more accurate in 
easy conditions for all the subtasks (Figure 1).  

Figure 1: Task design and behavioural results. 

Data acquisition and preprocessing MEG data were 
acquired using a Neuromag system with 204 planar 
gradiometers and 102 magnetometers. EEG data were 
acquired concurrently using a 70-channel EEG cap. 
Structural MRI data were acquired using a Siemens 3T 
Prisma scanner. We used MNE-Python (Gramfort et al., 
2013) for all the MEG/EEG processing steps, including 
a signal-space separation to reduce environmental 
artefacts, an independent component analysis to 
remove eye movement and heart-beat artefacts, and a 
band-pass filter between 1-40 Hz. 

Source reconstruction Based on participants’ 
structural MRI scan, we used FreeSurfer to obtain the 
reconstructed surface. We computed a boundary 
element forward model for each participant and 
computed inverse models for each subtask using the 
dynamic statistical parametric mapping (dSPM). 
Human Connectome Project multimodal parcellation 
(Glasser et al., 2016) and corresponding network 
definition (Assem et al., 2020; Ji et al., 2017) were used 
for analyses involving regions of interest (ROIs).  

Irregular-resampling auto-spectral analysis (IRASA) 
and multivariate pattern analysis (MVPA) All MEG 
and EEG sensors were used for sensor space MVPA. 



After removing evoked potentials from each trial for 
each condition, we used IRASA (Wen & Liu, 2016) to 
separate the oscillatory and aperiodic components from 
the mixed power spectrum using the time window of 
0.3-1.5 s for each subtask (Figure 2A). For decoding 
based on oscillatory components, we used averaged 
oscillatory power for each frequency band (theta: 3-7 
Hz; alpha: 8-12 Hz; beta: 15-30 Hz). For decoding 
based on aperiodic components, three aperiodic 
parameters (broadband power, slopes, and intercepts) 
were used. We used a 5-fold cross-validation procedure 
with a linear support vector machine for classification. 
For the cross-task generalisation, we trained classifiers 
on task demand based on one subtask and then tested 
them in all other subtasks. For source space MVPA, we 
used activity from 360 ROIs for decoding analysis and 
then used the weight projection method (Haufe et al., 
2014) to obtain source patterns. 

Results 

Both oscillatory and aperiodic components 
support domain-general intelligence 

After separating the oscillatory and the aperiodic 
components, as shown in Figure 2A and 2B, we found 
that oscillatory power in theta, alpha, and beta bands, 
as well as aperiodic components (broadband power, 
slopes, and intercepts) could decode task demand 
(hard vs. easy) for all six subtasks with above-chance 
decoding accuracy (all ts > 3.22; FDR-corrected ps < 
0.002). These results highlighted the significant roles of 
both oscillatory and aperiodic activity in coding various 
task demands that support domain-general cognition. 

Figure 2: (A) Illustration of ERP subtraction and 
IRASA. (B) Decoding results on task demand using 

oscillatory or aperiodic components. (C) Source 
patterns contributing to demand decoding (averaged 
across all the subtasks). (D) The core regions of the 

MD network and the absolute mean z-scores of 
patterns within in each network that contributed to 

classifying task demand. 

Distinct cortical sources for oscillatory and 
aperiodic components in domain-general 
intelligence 

We then estimated the cortical sources of these 
domain-general oscillatory and aperiodic signals. As 
shown in Figure 2C, compared to easy conditions, 
oscillatory components showed increases in mid-frontal 
theta, occipital alpha, and lateral-frontal beta activity 
under hard conditions. In contrast, the demand-related 
aperiodic components (especially the broadband power 
and intercepts) showed distributed patterns across the 
brain, partially overlapping with the domain-general MD 
network (Figure 2D). These results revealed distinct 
spatial sources for oscillatory and aperiodic 
components in domain-general cognition. 

Cross-task generalisability 

We then tested whether the way that demand 
modulated these signals generalised across different 
subtasks. As shown in Figure 3, we found that although 
both oscillatory and aperiodic components showed 
some generalisability across subtasks, the aperiodic 
broadband power showed the strongest generalisability. 

Figure 3: Cross-task generalisation on task demand 
for (A) oscillatory and (B) aperiodic components. 

Conclusion 

This study investigated the neural mechanisms for 
domain-general intelligence reflected in oscillatory and 
aperiodic electrophysiological responses in humans. 
We found that both oscillatory (in theta, alpha, and beta 
bands) and aperiodic activity (broadband power, slopes, 
and intercepts) are modulated by task demand across 
all the subtasks but with distinct sources. Cross-task 
generalisation results suggested that the aperiodic 
broadband power was the most domain-general 
property, in consistent with its MD-like source pattern. 
These findings provide a novel way to understand how 
domain-general intelligence arises and have the 
potential to inspire relevant research in both fields of 
neuroscience and artificial intelligence. 
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