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Abstract: 

Cognitive neuroscience aims to elucidate the neural 
mechanisms underlying cognitive functions. Classical 
fMRI studies have identified them by using specifically 
designed experimental tasks. Recently, a collaborative 
effort to establish a common ontology has enabled a 
broader understanding of cognitive functions beyond 
individual tasks. Despite progress, comprehensive 
insights of functions like sustained attention defined by 
task performance remain elusive due to variable brain 
activity patterns linked to performance across tasks. 
Recent computational advances offer data-driven 
estimation of brain states, independent of task 
performance. Studies using these methods frequently 
identify consistent brain states of the default mode 
network (DMN) and dorsal attention network (DAN), 
though their task-specific relevance and representation 
of cognitive functions are not fully understood. In this 
study, we estimated brain states in a data-driven manner 
using open fMRI data from about 100 participants who 
engaged in diverse cognitive tasks. Our findings indicate 
that both DMN and DAN states are common across tasks, 
with the DMN state associated with faster and more 
stable reaction times. However, accuracy differed by task 
and condition, suggesting that DMN and DAN may 
represent automatic processes and cognitive control, 
respectively. These data-driven approaches enable a 
unified analysis across tasks, enhancing our general 
understanding of cognitive functions. 
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Introduction 

A primary objective of cognitive neuroscience is 
clarifying the mechanisms that underlie cognitive 
functions. Classical neuroimaging research using fMRI 
has identified the neural correlates of specific function 
by contrasting experimental tasks that are carefully 
selected to vary with respect to only a key function of 
interest. Although each task probes only a small 
number of facets of cognition, the collaborative effort to 
establish a common ontology among experimental 
tasks emphasizes the critical importance of 
comparisons across these tasks [1]. This guides us to 
achieve a general understanding of cognitive functions 

without confining to specific cognitive task [2]. Despite 
these efforts, we lack a general understanding of 
cognitive functions, such as sustained attention that are 
defined by cognitive task performance. While the brain 
activation pattern associated with superior performance 
is regarded as reflecting focused state, one significant 
bottleneck is that brain activity associated with superior 
performance varies across cognitive tasks. Recent 
advances in computational methods offer a promising 
avenue for the data-driven estimation of brain states 
without relying on task performance. These advances 
consistently demonstrate the presence of the default 
mode network (DMN) and dorsal attention network 
(DAN) states [3–7]. However, since previous studies 
have primarily concentrated on specific tasks such as 
resting, movie viewing, and sustained attention tasks, it 
remains unclear whether these states are shared or 
specific to cognitive tasks, and what cognitive functions 
do these states represent. To solve these problems, we 
estimated brain states across various cognitive tasks 
and explored their correlation with task performance.  

Methods 

In this study, we applied a data-driven brain estimation 
method called energy landscape analysis [3,8] to an 
open fMRI dataset collected from 103 participants 
performing a variety of cognitive tasks [9]. For each 
cognitive task, reaction time (RT), RT variability, and 
accuracy in each brain state were evaluated. 

Cognitive tasks 

The open fMRI data consists of 103 healthy adults 
conducting attention network test (ANT), cued task 
switching (TwoByTwo), Columbia card task (CCTHot), 
dot pattern expectancy (DPX), delay discounting, 
simple and motor selective stop signal, Stroop, a towers 
task, and resting to examine the construct of self-
regulation. Due to space limitations, we will only briefly 
describe the ANT, Stroop, DPX, and stop signal task, 
which are used to investigate the relationship between 
brain state and task performances. In the ANT, 
participants respond to arrows, indicated by a spatial 



cue (left or right), with congruent or incongruent flankers 
across 128 trials. In the Stroop task, subjects see color 
words printed in matching (congruent) or non-matching 
(incongruent) ink colors. Subjects are instructed to 
respond to the ink color of the word quickly and 
accurately. The task includes 96 trials. In the DPX task, 
subjects see a series of cue-probe stimulus pairs and 
make a speeded response after the probe. Each 
stimulus consists of dot patterns, with 6 possible cues 
and 6 possible probes. The “target cue” is 'A' and the 
“target probe” is 'X', and the others are ‘B’ and ‘Y’, 
respectively. Subjects must press one key if 'A' is 
followed by 'X' and a different key for any other cue-
probe combination. The task consists of 160 trials and 
55% of these trials are in the 'AX' condition (frequent) 
and 15% of these trials are in the other conditions (‘AY’, 
‘BX’, ‘BY’), respectively. In the stop-signal task, 
subjects respond to simple cue with a key press. In 
some trials, a star appears after a delay, signaling the 
participant not to respond. There are a total of 125 trials, 
with 60% of the trials being go trials and 40% being stop 
trials. Task performance was evaluated in terms of RT, 
RT variability, and accuracy.  

In the ANT and Stroop tasks, to investigate the 
relationship with attentional-control processes, we 
compared congruent and incongruent conditions. In the 
DPX task, to investigate the relationship with context 
processing, we compared the frequent (AX) and rare 
(AY) conditions. In the stop-signal task, to investigate 
the relationship with response inhibition process, we 
compared go and stop conditions. 

 

Brain state analysis 

The fMRI data were preprocessed using fmriprep 
21.0.1 [10]. We extracted the activities from 8 networks 
(Fronto parietal control network divided into A and B in 
Yeo 7 network)[11,12] based on previous study [3]. We 
integrated these activities of all participants, and 
applied energy landscape analysis to estimate the 
stable brain state for each cognitive task. This analysis 
labels each time point as a stable brain state. The brain 
state is represented by one of 256 (2^8) patterns with 8 
networks ACTIVE and INACTIVE. By knowing the brain 
state at each time point, we could evaluate the task 
performance during participants spend in the brain state.  

Results 

Brain state results 

We found that a total of 12 stable brain states existed 
across all tasks (Figure1A). Notably, State1 (DMN 
active state) and State2 (DAN active state) were 
dominant across a range of tasks including ANT, Stroop, 
DPX, and both stop signal tasks. Furthermore, we 
discovered for the first time that State1 and State2 were 

shared brain states present in all tasks except for the 
delay discount task (Figure1B). This novel finding 
underscores the ubiquitous nature of DMN and DAN 
states, aligning with and extending previous research 
that has consistently reported on these states [3,5].  

Figure 1: Estimated brain states. The colored cell 
represents ACTIVE network (A) and their dwell time (B) 
in 10 cognitive tasks. DMN: Default mode network; Lim: 
Limbic; FPCN: Fronto-parietal control network; DAN: 
Dorsal attention network; VAN: Ventral attention 
network; SMN: Somato-motor network; Vis: Visual 

Relationship between state and behavior 

We explored the link between cognitive processing and 
State1 and State2 by analyzing their influence on 
performance in ANT, Stroop, DPX, and stop signal 
tasks where both states were dominant. Using a 
generalized mixed effects model, we analyzed 
interactions between condition and brain state, treating 
participant effects as random in each task. We found 
that average RTs in State1 were significantly faster and 
more stable across all task conditions compared to 
those in State2 (State effect, all p < 0.05, no significant 
interaction). This finding aligns with the performance 
observed in sustained attention tasks from previous 
studies [3,5]. Surprisingly, however, the brain states 
associated with high accuracy varied depending on the 
task condition (interaction effect in Stroop and DPX, p < 
0.005, Figure 2). Specifically, the accuracy was 
significantly higher in State2 in the incongruent 
condition of Stroop, the rare condition of DPX, and the 
stop condition of stop signal task, while the accuracy 
was significantly higher in State1 in the other conditions 
except for stop signal go condition. The conditions 
associated with higher accuracy in State 2 were task 
conditions in which cognitive control is important [13,14]. 
This suggests that State 2 represents a cognitive 
control process. Furthermore, faster RT but low 
accuracy during State1 in those conditions suggests 
that State1 represents automatic process. 



In this study, we found that two brain states, common 
across various cognitive tasks, consistently associated 
with the speed and variability of RT but differently 
associated with accuracy. Using data-driven methods 
allows for unified analysis across tasks, improving our 
general understanding of cognitive functions.  

Figure2. Relationship between brain state and 
behaviors in cognitive tasks. **p < 0.005, significant 
interaction effect. * p < 0.05, significant state effect. 
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