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Abstract: 

The basal ganglia (BG) play a pivotal role in decision-
making, facilitating selective attention through intricate 
interactions among its substructures. However, the 
relative contributions of these substructures to decision-
making remain underexplored. We show that different BG 
substructures contribute to resolving uncertainty and 
conflict during perceptual decisions. Intracranial 
recordings from the subthalamic nucleus (STN), globus 
pallidus internus (GPi), and externus (GPe) in humans 
showed theta-band activities predictive of decision 
dynamics indexed by diffusion decision models with 
collapsing decision boundaries. Dynamic theta 
modulations predicted the onset and shape of the 
collapsing boundary: increased STN theta prolonged 
decisions under higher conflict, while decreased GPe 
theta expedited decisions under lower conflict. Moreover, 
conflict-induced response cautiousness was guided by 
STN under higher uncertainty but by GPe under lower 
uncertainty. GPi effects were uniform across conditions. 
These findings demonstrate the complex decision-
relevant interplay amongst BG components. 
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The basal ganglia (BG), a subcortical brain network, 
regulate the integration of decision-relevant information 
and determine the necessary evidence threshold for 

making a choice (Bogacz & Gurney, 2007; Shadlen & 
Newsome, 2001; Smith et al., 1998). Within the BG, the 
striatum accumulates evidence for alternative actions, 
while the globus pallidus internus (GPi) modulates the 
impact of these actions on decision-making (Doi et al., 
2020; Moss et al., 2021; Westbrook et al., 2021). 
Additionally, the GPi's function is influenced by the 
globus pallidus externus (GPe) and the subthalamic 
nucleus (STN), which are integral to distinct pathways 
linking the BG and the cortex. 

The STN’s role as a global “brake” mechanism in 
response to decision conflict is supported by various 
studies across species, employing behavioral, 
functional imaging, and neural manipulation techniques 
(Aron et al., 2016; Herz et al., 2017; Isoda & Hikosaka, 
2008; Moolchand et al., 2022; Schmidt et al., 2013; 
Wessel et al., 2019; Zavala et al., 2017). The diffusion 
decision model (DDM; Ratcliff, 1978) has been used to 
formalize the STN’s contribution, suggesting that 
decision conflict elevates the decision threshold, 
leading to more deliberate and accurate responses. 
However, the relationship between STN function, 
decision thresholds, and decision conflict remains 
complex, with evidence suggesting dynamic rather than 
static decision thresholds regulated by the STN (Isoda 



& Hikosaka, 2008; Moolchand et al., 2022; Ratcliff & 
Frank, 2012). Additionally, the role of the BG, in the 
presence of noisy and conflicting information, and the 
interaction between other BG structures like the GPe 
and GPi and their contribution to decision-making 
remains unclear. 

Bridging findings across computational 
modeling of BG and behavior 

We present a discussion on the distinct and 
complementary roles of STN, GPe, and GPi in decision-
making, particularly under conditions of conflict and 
uncertainty. For doing so, we utilize a modified dot 
motion coherence task in which we independently 
varied conflict and evidence uncertainty. This task was 
administered with intracranial recordings to patients 
with Parkinson’s disease (n=14) or dystonia (n=3). We 
then compared different DDMs with varying 
specifications of decision boundary dynamics and 
accumulation processes to identify the model that 
accounts best for observed behavior using Bayesian 
hierarchical modeling. Integrating single-trial local field 
potentials (LFPs) into the DDMs to account for time-
varying dynamics, we relate trial-based theta band 
activity in BG components to latent decision features 
that are not directly observable with conventional 
analyses of RTs and choices.  

Theta-induced modulation of decision 
boundary dynamics 

A modified DDM with dynamic decision thresholds 
best captured task performance. This model included 
constant drift rates and a nonlinear decision boundary 
whose collapse was characterized by a Weibull 
distribution (Fig. 1) governed by two free parameters 
controlling the onset and the shape of this dynamic 
process. Incorporating trial-based theta responses into 
this Weibull-DDM, we found that early (post-stimulus) 
theta activity modulated collapse onset, whereas later 
pre-response activity modulated collapse shape.  

 

Figure 1: Weibull-informed decision boundaries of 
modified diffusion decision modeling. 

Complementary decision dynamics 
between the STN and GP subsegments 

Theta activity in distinct BG regions modulated the 
decision boundary collapses in a complementary 
fashion (Figure 2). Specifically, theta activation in the 
STN and the GPe modulated boundary collapses in 
opposing ways depending on uncertainty and conflict. 
In contrast, GPi theta activation was related to 
prolonged decision boundaries uniformly across task 
conditions. This is consistent with its role as the final 
output structure (Bogacz & Gurney, 2007; Frank, 2006). 



 

Figure 2: Complementary decision dynamics across 
three basal ganglia substructures. 

Our study underscores the need for further 
investigation into the nuanced contributions of BG 
structures to decision-making, highlighting the 
importance of distinguishing between different types of 
conflict and uncertainty in future research. 
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