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Abstract

The ability to visually simulating sensory, motor, and cog-
nitive representations and imagine potential future ac-
tions is crucial for our daily life. However, the neural ba-
sis underlying the visual simulation of object movement
remains partially understood. Past work using human
fMRI decoding has provided some evidence for the re-
activation of motion-responsive areas of the visual cor-
tex during mental simulation. Here, we tested a hu-
man patient with implanted stereoelectroencephalogra-
phy (sEEG) electrodes while they played the ’Planko’
game, where they were asked to predict the trajectory of a
ball falling through a field of planks. The patient learned
to play the game significantly above chance 68.9%. We
use time-frequency analysis to study the similarity be-
tween the beta event of mental simulation and video
watching. We also used the deep learning method to
find a joint embedding between observed and simulated
events.
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Introduction

To perform physical reasoning and complex decision-making,
we often must use internal models of the world to predict fu-
ture versions of events. This ability, called “visual simulation”,
involves picturing upcoming events many steps into the future
using understanding of physics. This is in contrast to “visual
imagery,” which often involves reactivating memories of static
precepts. Although previous research has gathered evidence
for visual simulation in primates for physical reasoning tasks
Ahuja & Sheinberg (2019); Battaglia et al. (2013); Rajaling-
ham et al. (2022), the neural basis underlying the visual sim-
ulation of object movement remains poorly understood.

One intriguing hypothesis is that visual imagery "reuses”
the same circuits and machinery used for visual perception.
In their seminal work, Kosslyn et al. (1995) found that the pri-
mary visual cortex is activated when subjects close their eyes
and imagine objects in their mind’s eye. Surprisingly, Reddy
et al. (2010) found that the object category of imagined visual
objects could even be decoded from patterns of fMRI activity.
Moreover, the same decoder trained to decode category in-
formation during perception was able to generalize during im-
agery, indicating that the visual representation during imagery
and perception of objects were remarkably similar.

However, this hypothesis remains poorly studied for tasks
involving visual simulation. To test primates on visual simula-
tion, Ahuja & Sheinberg (2019) introduced the “Planko” task,
which involves judging the final position of a ball (which of
two baskets — left or right) as it falls through randomly placed
planks (Fig. 1). Previous work on the Planko task has found
behavioral evidence that both monkeys Ahuja et al. (2024) and
humans Ahuja & Sheinberg (2019) resort to a simulation-like
strategy to solve this task. Past workAhuja et al. (2021) us-
ing human fMRI recordings of subjects performing this task
has found reactivation of the same motion-responsive areas
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Figure 1: An outline of one complete trial of Planko

of the visual cortex that are active during perception of ball
movement through the planks. Here, we tested a human
patient with implanted stereoelectroencephalography (sEEG)
electrodes while they played Planko, to quantify the extent
to which the neural representations during visual simulation
matched the ones during motion perception.

Method
Participant

A female participant, undergoing epilepsy monitoring at
Rhode Island Hospital, participated ( IRB protocol #217972.).
Eight depth electrodes (87 contacts in total) were implanted
in multiple locations, including occipital, lateral, and parietal
areas.

Task

Each trial featured a board with a single ball at the top, a se-
ries of semi-randomly positioned planks in the middle, and two
baskets at the bottom. The sequence of events for a trial in-
cluded a 1000ms fixation dot followed by the board display,
with the positions of the ball and baskets remaining constant
throughout. Participants were instructed to predict which bas-
ket the ball would land in when dropped from its central posi-
tion. Responses were recorded by pressing one of two but-
tons corresponding to the baskets on the screen. The ball
dropped once a response was made, providing visual feed-
back (9000ms). Participants were instructed to track the falling
ball visually until it landed in the selected basket.

The task comprised 3 practice trials followed by 70 exper-
imental trials. During each trial, sEEG data were recorded
across three main phases: fixation, mental simulation, and
passive video viewing.

Defining beta events and features

Recent research in both humans and non-human primates
has revealed that neural activity at the trial level occurs in
burst-like events are believed to play a crucial role in sup-
porting higher-order cognitive functions (Jones, 2016; Shin et
al., 2017). One of them is the beta frequency activity (15-29
Hz) events. They are usually associated with cognitive de-
mands or shifts in spatial attention Shin et al. (2017); Sac-
chet et al. (2015). Using the toolbox provided byMcKeon
et al. (2023), beta events were defined as local maxima in
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Figure 2: A: Time-frequency representation (TFR) of fixation,
B: TFR of simulation, C: TFR of passive viewing

the time-frequency representation (TFR) matrix for each fre-
quency value within the beta band, with power exceeding a
cutoff of 6 times the median power Shin et al. (2017).(Fig. 2)

Spectral analysis

The sEEG preprocessing was done following revised pipeline
of EEGlab toolbox (https://eeglab.org/tutorials/, retrieved Feb
19, 2024). Spectral data were computed for every electrode
in the range 4-35 Hz by convolving the neural signals with a
complex Morlet wavelet Qin & Shen (2000).

Learning a neural embedding with contrastive
learning

We used a contrastive loss (Défossez et al. (2023)) to learn
a neural embedding in order to associate a mental simulation
sEEG segment X} from ftrial k with its corresponding sEEG
segment during passive viewing of the ball dropping, Y;. To
calculate this loss, we first selected one positive example Y,
which is the true match for X;, and then sample N-1 negative
examples, Y; _n—1. These negative samples are SEEG seg-
ments during viewing of ball drop of different trials. By mini-
mizing this loss, the model learns to match sEEG segments
during simulation and passive video watching from the same
trial while making sEEG segments from different trials as dif-
ferent as possible. (Fig. 3)

Result
Beta event

Beta event with peak frequency at 15-16Hz showed increased
events during mental simulation (M = 0.209, SD = 0.066)
compared to fixation (M =0.154, SD =0.112,¢(72) = —3.52,
p < 0.001), with similar levels to passive viewing (M = 0.19,
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Figure 3: Contrastive learning model architecture.

SD = 0.042, ¢(72) = 2.01, p = 0.0485), suggesting engage-
ment of similar neural processes.

Contrastive learning

We performed five times five-fold cross-validation confirmed
the model’s efficacy in distinguishing between correct and
random data sequences, validating our approach. Our top
1 validation accuracy using time-domain data (M = 0.125,
SD = 0.091) is significantly higher than randomly shuffled
data (M = 0.062, SD = 0.058, p < 0.001) .

Discussion

In this study, we presented some early evidence for the “re-
suse” of machinery involved in motion perception during vi-
sual simulation. This paves the way for future work involving
larger participant cohorts and a broader range of brain regions
where ball positions could be decoded during visual simulation
using a decoder trained during passive ball drop viewing. This
will allow for understanding the nature of the time course of
such simulations as well the neural circuits involved.
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