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Abstract: 

Structural topology of neural networks develops non-
linearly across the lifespan and is strongly related to 
cognitive outcomes. Here, we aggregated diffusion 
imaging from nine datasets with a collective age range of 
zero to 90 years old (N = 4,216). Our analysis focused on 
understanding how network organization changes 
across age. We projected this data into a three-
dimensional manifold space using Uniform Manifold 
Projection and Approximation. Using this manifold, we 
identified four major turning points in topology across 
the lifespan: at ages 8, 32, 62, and 85 years. These 
turning points demarcate five major epochs within which 
topological development occurs along similar 
trajectories. By comparing correlations, principal 
components analysis scores, and dynamic time warping 
distances, we conclude these epochs mark important 
shifts in topological development based on 
directionality, driving forces, and trajectories. Our 
findings underscore the significance of generalizing 
topological development beyond individual 
organizational metrics to enrich our understanding of 
network development trajectories and crucial turning 
points across the lifespan. Future directions for this 
project include using weighted generative network 
modeling and cognitive analysis to investigate potential 
disparities in topological trajectories among individuals. 
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Introduction 

Structural brain networks capture the architecture 
underlying information exchange in the brain. The 
topology of these networks is associated with important 
cognitive outcomes (Sporns et al., 2004). Graph theory 
can be used to analyze network organization and to 
identify connection characteristics that relate to 
cognitive outcomes, thereby facilitating a deeper 
understanding the relationship between topology and 
cognition (Rubinov & Sporns, 2010). 

Previous research has delineated topological 
milestones of specific organizational metrics, such as 
the “U” shape of development that occurs around 30 
years old and is characterized by peak network 

efficiency and integration (Puxeddu et al., 2020; Riedel 
et al., 2022; Zhao et al., 2015). However, the full picture 
of normative topological trajectories across the lifespan, 
as well as their alignment with cognitive milestones, 
remains unknown. 

Complex network topology analysis requires 
dimensionality reduction to identify patterns in a data-
driven manner. Manifold learning is a popular method 
that aims to preserve the geometric structure of high-
dimensional data while projecting it into a low-
dimensional space (Cayton, 2008). Among manifold 
learning techniques is Uniform Manifold Approximation 
and Projection (UMAP), which captures both local and 
global data structures with a faster runtime compared to 
similar methods (e.g., t-SNE) (McInnes et al., 2018). 

This study explores structural topological 
development across the lifespan using data-driven 
methods. Specifically, we: (1) investigate the 
relationship between age and topological integration, 
segregation, and centrality; (2) utilize UMAP to define a 
manifold space and identify major turning points across 
the lifespan, and (3) examine how these turning points 
capture significant shifts in topological trajectories. 

Methods 

Datasets & tractography 
This project includes diffusion tensor imaging data 

from nine datasets that together range from zero to 90 
years old (dHCP: Edwards et al., 2022; BCP: Howell et 
al., 2019; CALM: Holmes et al., 2019; RED: Bignardi et 
al., 2021; ACE: Johnson et al., 2021; HCPd: Somerville 
et al., 2018; HCPya: Van Essen et al., 2013; HCPa: 
Bookheimer et al., 2019; CamCAN: Shafto et al., 2014). 
Normalized weighted networks were generated with 
deterministic tractography (Yeh et al., 2010) using the 
AAL90 neonatal, one year, two year, and adult atlases 
(Shi et al., 2011; Tzourio-Mazoyer et al., 2002). The 
original sample (N = 4,216) was harmonized across 
atlas and dataset using ComBat (Fortin et al., 2017). 



For analysis, only neurotypical participants were used 
(N = 3,082; female n = 1,994; male n = 1,808). 
Network topology 

Using the Brain Connectivity Toolbox (Rubinov & 
Sporns, 2010), we calculated 12 global and average 
local measures of network organization. 

Manifold construction & turning points 
We used Uniform Manifold Approximation and 

Projection (McInnes et al., 2018) to derive 968 3D 
manifold spaces of topological data (minimum distance 
= 0 – 1, nearest neighbors = 2 – 89). We ran least 
squares polynomial fits to derive 3D lines of best fit and 
used the gradients of these lines to determine major 
turning points in topological development (Fig. 1A). 
Statistics 

To explore topology across age, we used generalized 
additive models (controlling for sex, atlas, and dataset). 
LASSO regularization and Pearson correlations were 
used to examine topological changes within epochs 
(Fig. 1B). We also conducted a principal components 
analysis with parallel analysis on topological measures 
(Fig. 1C). Between epochs, we analyzed PCA scores 
with Welch’s ANOVA and Games-Howell post-hoc test. 

Results 

Connectivity & Topology 
Weighted networks significantly fluctuate in density – 

with highly density at birth and 30 years old (p < 0.001). 
However, the average strength of networks significantly 
increased nearly linearly across the lifespan (p < 0.001). 
Global efficiency fluctuated in the first two decades of 
life, with the highest point of at 28 years before steadily 
declining through 90 years old (p < 0.001). Modularity 
had a lifetime low at 30 years old was followed by 
progressive increase throughout aging (p < 0.001). 
Clustering coefficient significantly increased linearly 
across the lifespan (p < 0.001).  
Lifespan Epochs 

Four major turning points were identified – eight, 32, 
62 and 85 years old (Fig. 1A,D). These defined five 
epochs which were driven by different organization 
properties as well as displayed significantly different 
correlational patterns (Fig. 1B). Early epochs are 
significantly different from each other in PC1 and PC2 
whereas older epochs were significantly different in 
PC3 (Fig. 1C). Warping distances between epochs 
indicate trajectories between epochs two and three 
were the most different (distance = 4.27) compared to 
epochs one to two (dist. = 2.89), epochs three to four 
(dist. = 3.24) and epochs four to five (dist. = 2.12). 

Together, these turning points capture important but 
complex shifts in topological development (Fig. 1D).  

 
Figure 1: Lifespan topological turning points. (A) 

Example manifolds with turning points (green dots). 
Histogram and density plot of all turning points (red x 

indicates selected turning points). (B) Correlations with 
age for epoch (black stars indicate p < 0.05; highlights 
indicate largest LASSO coefficient). (C) Largest four 
PCA loadings and boxplots of PCA scores across the 
epochs (*** indicates p < 0.001, ** indicates p < 0.01, * 

indicates p < 0.05). (D) Manifold spaces for each 
epoch (green X indicates the turning points). 

Future Directions 
This research will next use weighted generative 

network modeling (GNM) (Akarca et al., 2023) to 
explore how network wiring constraints change across 
the lifespan and to investigate whether alterations in 
these economic conditions align with major turning 
points (Fig. 2A). Additionally, standardized fluid 
cognition scores will be used to delineate ‘high’ (85th 
percentile or above) and ‘low’ (15th percentile or below) 
cognitive groups (Fig. 2B). The aim of this second 
project is to determine if cognitive groups differ 
significantly in topology, turning points, or economic 
wiring constraints.   

 
Figure 2: Future directions of the project with GNMs 
and cognitive subgroups. (A) Schematic by Akarca et 

al. (2023) outlining weighted GNMs theory. (B) 
Standardized fluid cognition groups which will be used 
to explore potential topology-cognition links across the 

lifespan. 
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