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Abstract

Recent progress in multimodal AI and “language-aligned”
visual representation learning has re-ignited debates
about the role of language in shaping the human visual
system. In particular, the emergent ability of “language-
aligned” vision models (e.g. CLIP) – and even pure lan-
guage models (e.g. BERT) – to predict image-evoked brain
activity has led some to suggest that human visual cortex
itself may be “language-aligned” in comparable ways.

But what would we make of this claim if the same proce-
dures worked in the modeling of visual activity in a species
that has no language? Here, we deploy controlled com-
parisons of pure-vision, pure-language, and multimodal
vision-language models in prediction of human (N=4) and
rhesus macaque (N=6, 5:IT, 1:V1) ventral visual activity
evoked in response to the same set of 1000 captioned nat-
ural images (the “NSD1000”). Preliminary results reveal
markedly similar patterns in aggregate model predictivity
of early and late ventral visual cortex across both species.
Together, these results suggest that language predictiv-
ity of the human visual system is not necessarily due to
“language-alignment” per se, but rather to the statistical
structure of the visual world as reflected in language.

Introduction The idea that language shapes how we ‘see’
the world has been the focus of an almost century-long debate
in cognitive (neuro)science (7; 19; 15; 11; 6), and has evolved
through many forms over that time. A recent evolution of
this idea has taken the form of a debate about the extent to
which high-level human visual cortex is ‘language-aligned’ –
or, in other words, the extent to which lingustic or linguistically-
learned structure is evident in visual brain responses (13; 16).
The resurgence of this debate is predicated in large part on
two seminal findings: first, the finding that ‘language-aligned’
machine vision models (e.g. CLIP) are some of the most
predictive models to date of image-evoked activity in the visual
brain (18); and second, the finding that even pure-language
models (e.g. BERT) are capable of predicting image-evoked
activity brain activity by way of image captions alone (4; 17).

Here, we apply a logical razor to this argument in the form
of assessing whether these two key findings hold in the brain
of a species that does not speak language. We call this the
‘monkey razor’: If the ability of ‘language-aligned’ vision models
or pure-language models to predict image-evoked brain activ-
ity is indeed evidence of language having (re-)shaped visual
representation, we should not find similar trends in monkeys.

Methods Our approach is to use encoding models fit to the
feature spaces of a diverse set of pure-vision (VMs), pure-
language (LMs), and multimodal (language-aligned) vision
(VLMs) models to predict image-evoked brain activity in the
ventral stream of 4 humans and 6 rhesus macaques shown
the same set of 1000 natural images from the Natural Scenes
Dataset (NSD) (1). Our encoding procedure follows an es-
tablished protocol for large-scale model comparison (3), and

includes a nested cross-validation regime that decontaminates
the selection of the most brain-like layer within each of our can-
didate models (assessed on a ‘training set’ of 500 images) from
the comparison of brain-likeness between models (assessed
on the held-out ‘test set’ of 500 images). The predictivity of the
encoding models is assessed with the raw Pearson correlation
(r) between model-predicted and actual brain activity. (The
calculation of comparable noise ceilings across species for use
in a measure of ‘explainable variance explained’ (2; 14) is an
area of ongoing investigation).

The brain-likeness of the pure-vision and language-aligned
vision models is assessed on the images themselves. The
brain-likeness of the pure-language models is assessed using
an average of the embeddings for the first 5 captions associ-
ated with each image as part of the Microsoft COCO metadata
(10) (from which NSD images are curated). The encoding
models for the human (fMRI) brain activity are fit to reliability-
selected voxels (NCSNR > 0.2) in a broad mask of early vi-
sual cortex (EVC, N=15326 voxels) and occcipitemporal cortex
(OTC, N=29840 voxels), with both anatomical and functional
criteria as the basis of inclusion. The encoding models for the
monkey (electrophysiology) brain activity are fit to multi-unit
responses (i.e. average firing rates in a 150ms window) from
arrays placed either in macaque V1 (N=34 units) or inferotem-
poral (IT) cortex (N=394 units). Note that we use the following
convention for reporting statistics: statistic [lower, upper] 95%
(bootstrapped) confidence interval.

Results
Vision versus Language in Human Ventral Stream (Top
Row of Figure 1) Commensurate with previous findings (8; 5),
we find that pure-language model embeddings over image cap-
tions are sufficient to predict high-level human ventral visual
activity almost as accurately as pure-vision models, with mean
voxel-wise OTC encoding scores of r=.332 [.298, .375], .365
[.336, .395], and .365 [.336, .393] for pure-language, pure-
vision, and language-aligned vision models, respectively. Con-
versely, language models perform far worse than pure-vision
and language-aligned vision models in prediction of early ven-
tral stream activity, with mean voxel-wise EVC encoding scores
of r=.178 [.153, .219], .335 [.302, .356], and , respectively.

Vision versus Language in Macaque Ventral Stream (Bot-
tom Row of Figure 1) Applying the same encoding procedures
with the same probe stimuli to prediction of brain activity in
macaque visual cortex, we find (as in humans) that pure-
language models are remarkably accurate in predicting high-
level ventral visual activity, with mean IT encoding scores of
r=.343 [.266, .427]. Also as in humans, we find that pure-
language models perform poorly in prediction of early visual
cortex (r = 0.107 for the single V1 subject), and that there
is no substantial difference between pure-vision models and
language-aligned vision models, with mean IT encoding scores
of r = .441 [.36, .523] and .415 [.343, .488]. There is, how-
ever, a slightly more pronounced difference between the pure-
language and pure-vision models in macaque IT (.343 versus



Figure 1: Encoding accuracies from the most brain-like layer of a series of (unimodal) pure-language, pure-vision, and (multimodal)
vision-language models in prediction of both human occipitotemporal cortex (OTC) and macaque inferotemporal cortex (IT).
Indiviudal points are the accuracies for individual subjects (human or macaque). The vertical striped boxes are the means
±95%CIs (across subjects) per model. The horizontal, semitranslucent rectangles extending over these striped boxes are the
means ±95% BCIs (across models) per model type (modality).

.441) compared to human OTC (.332 versus .365).

Cross-Encoding Analysis of Interspecies Difference This
divergence in the pattern of results between the two species
may be due to multiple factors, including the species-specific
recording modalities and preprocessing stesp (electrophysi-
ology versus functional imaging). The question of most rele-
vance, here, though, is whether the difference is attributable
to language (or at least, language as encoded in the pure-
language models). To assess this directly, we performed a mod-
ified cross-encoding analysis in which we used the macaque
IT data to predict the human OTC data, using the exact same
encoding procedure we originally applied to the model fea-
tures. We then used either the most OTC-predictive pure-
language embeddings or the most OTC-predictive pure-vision
embeddings to predict the residuals of this (interspecies) cross-
encoding model to see how much either modality could account
for the unshared structure across species. The logic of this
analysis is that if the difference between humans and monkeys
is a difference attributable to language, then the pure-language
embeddings should more accurately predict the variance that
remains in human brains once we’ve accounted for the struc-
ture that is shared with monkey brains.

Applying this analysis, we find first that macaque IT data is
reasonably accurate in predicting human OTC data, with an
average voxelwise-encoding score of r=.25 [0.19, 0.30] across
subjects, confirming prior reports that a sizable portion of the
representational structure in OTC is shared with macaque IT
(12; 9). Subsequently, we find that pure-language models are in
fact worse on average than pure-vision models in predicting the
residuals of the monkey-human cross-encoding, with Pearson
correlations between predicted and actual residuals of r=.095
[.069, .12] for pure-language models and r=.187 [.151, .223] for
pure-vision models. This analysis suggests (at minimum) that
the unshared structure between the species is not uniquely
defined by structure learned through language.

Summary In this preliminary work, we show that the ability of
‘language-aligned’ vision models and pure-language models to

predict image-evoked brain activity in human high-level visual
cortex is likely not evidence of language having reshaped vision.
We find similar trends using these models to predict visual brain
responses in a species that has no language, demonstrating
as well that those differences which do exist between humans
and monkeys are not directly attributable to the structures of
language alone. Such is the nature of the ‘monkey razor’: If,
caeteris paribus, an experimental effect holds in both humans
and monkeys, that effect cannot be attributable to the structure,
function, deployment, or learning of language per se. Thus,
the more likely explanation here is that the representational
overlap between pure-language models and the high-level
primate visual brain reflects an organization of the world that
is intuitive to us long before we learn to speak a language
– a structure learnable in large part through the hierarchical
encoding of natural image statistics. Language (as learned
by language models) may approximate the representational
endpoints of this process, but only to the extent that these
statistics are reflected in the language we use to describe the
world around us (a world the language models themselves
cannot actually ‘see’).

Further work is needed to make sense of the lingering dif-
ference (however small) between language model predictivity
of human OTC and macaque IT. One major factor that merits
further scrutiny here is the translation between different neural
recording modalities: fMRI signals, for example, may include
later visual components (including feedback) not evident in the
electrophysiological signal. In future work, we hope to assess
the tradeoff between pure-language and pure-vision model en-
coding over time – an analysis that could unveil an even greater
degree of similarity between humans and macaques than the
initial similarity we’ve shown here. Perhaps more importantly,
we could also aspire to collect or curate visual brain data in
both species that pushes the limits of representation learnable
through image statistics alone – and extends more explicitly
into the kinds of conceptual territories where the structures of
language are most indispensable for understanding.
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