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Abstract
Abstract reasoning, a key component of human intel-
ligence, seems to have recently emerged in large lan-
guage models (LLMs). If so, LLMs could help us pro-
vide a mechanistic explanation for the brain processes
behind the abstract reasoning abilities of humans. In this
study, we compared the performance of multiple LLMs
to human performance in a visual abstract reasoning
task. We found that while most LLMs cannot perform this
task as well as human participants, some LLMs are com-
petent enough for use as potential descriptive models.
We propose that the best-performing LLMs can be used
as models to understand human performance, response
times, and the timing of Event-Related Potentials (ERPs)
as recorded by electroencephalography (EEG) during the
task. We show initial behavioral and ERP results, and
present our plan to compare LLM embeddings and sur-
prisal measures to cortical activity patterns. This is the
first step in a larger project to create neurally-informed ar-
tificial networks as tools to understand human neurocog-
nition.
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Introduction
Recent advancements in Artificial Intelligence (AI), driven by
the development of massive, closed-source models, have
sparked global excitement about the field as well as an ongo-
ing debate about the genuine reasoning capabilities of these
systems. On the one hand, some research indicates emerg-
ing analogical and abstract reasoning abilities in LLMs (Webb,
Holyoak, & Lu, 2023). On the other hand, these models could
fool us by merely exploiting statistical patterns that are near
to fully imperceptible to humans (Kumar, Dasgupta, Daw, Co-
hen, & Griffiths, 2023), or even worse, by regurgitating exam-
ples that were present in a contaminated training dataset (Wu
et al., 2023).

Until the advent of LLMs, the abilities of AI relative to hu-
mans were mainly investigated within the field of vision neu-
roscience (Bankson et al., 2018; Cichy et al., 2016; Eick-
enberg et al., 2017), with representational similarity analy-
sis (RSA) being a pivotal tool in revealing correspondences
between the human brain and deep neural networks. This
technique involves comparing the similarity between activa-
tion patterns across different layers of neural networks and

brain activity across various regions to understand how each
processes information. For instance, studies have shown that
certain layers in convolutional neural networks engaged in vi-
sual tasks exhibit activation patterns that closely resembled
those in the human visual cortex, particularly in tasks involv-
ing object recognition and categorization (Güçlü & Van Ger-
ven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Kubilius et
al., 2019; Xu & Vaziri-Pashkam, 2021; Zeman et al., 2021).
While such studies have led to important advances, they have
been restricted to perceptual processes and their conclusions
have been moderated by other work highlighting important dif-
ferences in the way these models process visual information
(e.g., sensitivity to adversarial attacks, texture bias, etc.; for a
review, see paper by Bowers et al. (2023)).

We plan to extend this work towards understanding how the
brain supports higher-level cognition, by studying how activa-
tion patterns in layers of LLMs correlate with neurocognition
during reasoning, measured using human behavior and EEG.
We use a simple task where the goal is to complete the pat-
tern in a series of icons.

The current study focuses on investigating which LLMs are
candidate models of the human reasoning process by com-
paring LLM performance to that of a human sample. We have
identified models with human-like performance on our task,
and in the near future, we will examine whether these mod-
els indeed predict the timing and magnitude of Event-Related
Potentials (ERPs) during abstract reasoning.

Materials and methods

Participants A total of 60 participants were recruited from
the online platform Prolific, comprising an equal gender distri-
bution (50% female) with an average age of 37.8 years (SD =
12.2).

Large Language Models Responses were collected from
multiple open-source LLMs available via together.ai ’s public
API (available at https://www.together.ai/). Responses
were also collected from ChatGPT (OpenAI) and Claude (An-
thropic), through their respective online chat interface.

Task design On each trial, participants are presented with
a series of icons arranged in a way that follows a specific pat-
tern (e.g., ’ABABABAB’), while LLMs are presented with cor-
responding word descriptions. The goal is to predict the next
icon (or word) in the series, selecting from four multiple-choice
options. In the task given to participants, all icons and four re-
sponse options are presented simultaneously until a response



is made (mouse click) or the maximum response window (15
seconds) has been reached (see Figure 1). In the pilot EEG
experiment, the task is similar but each icon is first briefly
presented (600 milliseconds) to record icon encoding before
the whole sequence along with the four options are shown at
once.

Figure 1: Experimental sequence example. Top row: the se-
ries to be completed; bottom row: four response options; cor-
rect answer: lock icon (third position).

EEG Apparatus Pilot EEG data were collected using a 64-
channel headcap (10-20 layout) from BioSemi, connected to
an EEG amplifier system with a sampling rate of 2048 Hz.

Data Analysis
LLMs We compared the models’ choice accuracy to that of
human participants on the whole and for each abstract pat-
tern.

EEG One participant’s EEG data during a similar version of
the visual abstract reasoning task written in PsychoPy. This
data was collected to pilot the overall study. We cleaned the
data using a [1, 10] bandpass filter and an automatic clean-
ing procedure relying on Independent Component Analysis.
Visual Event-Related Potentials (ERPs) were calculated for
each task phase (encoding phases vs. reasoning phase). We
observed N200s (negative peaks around 200 ms in posterior
electrodes, see Nunez, Gosai, Vandekerckhove, and Srini-
vasan (2019)), to each visual onset.

Results
Human Performance On average, human participants
reached an accuracy of 85.60% across all patterns. Accuracy
tends to be high (> 90%) on simpler patterns like ’AAAAAAA’
or ’AAABAAAB’ but decreases on more complex ones, such
as ’ABCDEEDC’ (dropping to about 53.69%).

LLMs Performance GPT-4 and Claude 3 Sonnet exhibit
the highest average accuracy, close to human levels at ap-
proximately 81.58% and 83.33% respectively. Other models,
like the Nous-Hermes-2-Yi-34B and various Qwen models,
perform significantly lower, with scores ranging from around
44.74% to 56.14%.

Pattern-Specific Performance Both humans and LLMs
show variability in performance across different patterns. No-
tably, all models and humans scored highly on the simplest

Figure 2: Average performance of human participants and
LLMs across all pattern types. Red dotted line: chance-level
performance.

pattern (’AAAAAAA’), often reaching perfect scores. However,
on complex patterns like ’ABCDEEDC’, performance notably
decreases for both humans and LLMs. This drop, however, is
more dramatic for LLMs. For example, between ’AAAAAAA’
and ’ABCDEEDC’ sequences humans dropped from 97.54%
to 53.69% models (excluding those who performed on aver-
age below chance-level) dropped from 70.24% to 14.29%.

Figure 3: EEG activity timeseries showing ERPs in each en-
coding phase and the final reasoning phase in the pilot partic-
ipant.

Discussion
Our results show that most LLMs perform below human level
accuracy. However, the two closed-source models we tested
performed similarly to humans. Yet because these models
are closed-source we cannot use activation patterns in lay-
ers of these LLMs to predict the ERPs. However, it is possi-
ble to compute surprisal based on an LLM’s log probabilities
for each pattern completion option, which could be used to
predict ERPs (see Figure 3) with a slightly altered task de-
sign. Once we have a model that can predict ERPs during the
reasoning phase, we plan to work towards creating a neurally-
informed artificial networks as tools to understand human neu-
rocognition.
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