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Abstract
Prior research has extensively documented functional 
selectivity for categories within visual cortical areas, pri-
marily by contrasting neural responses to images from 
various categories. However, such categorical ap-
proaches are less suitable to capture the diversity of 
neural representations within these areas. Do category-
selective areas encode holistic categories, or are they in-
stead tuned to multifaceted features? To address this 
question, we employed non-negative matrix factorization 
(NMF) for analyzing human fMRI responses to natural im-
ages in face-, body-, and scene-selective areas, which 
uncovered a consistent set of interpretable neural di-
mensions across participants. These dimensions not 
only aligned with the areas’ respective category prefer-
ences, but also revealed finer within-category distinc-
tions, indicating selective tuning to diverse visual input 
features. Mapping these dimensions onto the cortical 
surface showed both clustered and distributed topogra-
phies, which accounted for overlaps between areas. Our 
results suggest that category-selective areas show mul-
tifaceted feature tuning, challenging traditional views 
and highlighting the complex interplay of neural dimen-
sions in encoding visual information. 
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Introduction 
In the visual cortex, specific functional regions of inter-
est (fROIs) are known to respond selectively to catego-
ries such as faces, bodies, and scenes (Downing et al., 
2005; Grill-Spector & Weiner, 2014). However, a cen-
tral question remains largely unanswered: do these 
fROIs represent holistic categories or multifaceted fea-
tures? Several studies have identified nested functional 
selectivity within fROIs, revealing within-category dis-
tinctions and corresponding subclusters (Bracci et al., 
2015; Çukur et al., 2013, 2016; Weiner & Grill-Spector, 
2011). Other research proposes continuous organizing 
principles–such as animacy, real-world size (Konkle & 
Caramazza, 2013), aspect ratio (Bao et al., 2020), and 
semantics (Huth et al., 2012)–that span much of the vis-
ual cortex, including fROIs, challenging the conven-
tional notion of category selectivity. 

While categorical approaches typically examine be-
havioral or neural responses averaged across prede-
fined categories, dimensional approaches decompose 
these responses into their parts, enabling a more de-
tailed understanding of the driving features (Contier et 
al., 2023; Hebart et al., 2020). Here, we leverage such 
a data-driven approach, inspired by Khosla et al. 
(2022), to extract neural dimensions from fMRI re-
sponses within multiple fROIs in the human visual cor-
tex. This allows us to explore the diversity of neural 

representations and uncover their naturally emerging 
organizing principles. 

Methods 
We analyzed large-scale human fMRI responses from 
the Natural Scenes Dataset (NSD; Allen et. al 2022), 
focusing on 4 participants (10,000 individual images, 
1,000 shared images, 3 repetitions each). Our analyses 
targeted 6 fROIs–the fusiform face area (FFA), occipital 
face area (OFA), fusiform body area (FBA), extrastriate 
body area (EBA), parahippocampal place area (PPA), 
and occipital place area (OPA)–identified using a stand-
ard functional localizer (Stigliani et al., 2015; t > 2.5). 

We employed Bayesian non-negative matrix factor-
ization (BNMF) with Gibbs sampling (Schmidt et al., 
2009) to extract neural dimensions from fMRI re-
sponses of fROIs combined across hemispheres. 
BNMF decomposes the data matrix (V) into a response 
matrix (W) and a weight matrix (H), facilitating the iden-
tification of part-based, sparse, and interpretable di-
mensions. After baseline shifting voxel-wise responses 
to ensure the required non-negativity, we optimized the 
dimensionality (k*) for each fROI and participant by 
minimizing the Akaike Information Criterion (AIC). In a 
first-level consensus approach (Figure 1A), we identi-
fied consistent dimensions within participants through 
multiple BNMF runs (N=50) with k* and random initiali-
zations, using outlier detection and k*-means cluster-
ing. In a second-level consensus approach (Figure 
1B), we identified consistent dimensions across partic-
ipants by comparing dimensions via pairwise correla-
tion of shared images, employing a greedy selection for 
those with mean correlations above r > .3. 

 
Figure 1: Overview of the BNMF approach inspired by 
Khosla et al. (2022). 



Results 
We discovered a diverse set of neural dimensions 
within each fROI, ranging from 3 to 15, with high con-
sistency across participants (mean r=.47, SD=.14). 

Are these neural dimensions interpretable? To ex-
plore this question, we conducted an online behavioral 
experiment in which participants (N=9) labeled the di-
mensions based on samples of highest and lowest 
scoring images. Remarkably, the dimensions appeared 
to be interpretable. As expected, these dimensions pri-
marily aligned with the areas’ respective category pref-
erences (Figure 2). However, in line with previous 
findings, the dimensions also revealed finer distinc-
tions, such as indoor and outdoor settings in scene-se-
lective areas (Epstein & Baker, 2019), various body 
parts in body-selective areas (Bracci et al., 2015), and 
food in several areas (Jain et al., 2023; Khosla et al., 
2022). This indicates that fROIs encode information be-
yond category labels, and that the neural dimensions 
identified are comprehensible. 

Figure 2: Top 3 consistent dimensions per fROI from 
participant P1 (for brevity). Highest scoring images, 
most frequent labels, and 2D t-SNE visualization (per-
plexity=100) of the neural similarity space. Dots repre-
sent images arranged by neural similarity and colored 
according to independently rescaled response profiles 
that correspond to each dimension. 

But do these dimensions fully capture how fROIs 
represent visual information beyond the highest scoring 
images? We used RSA to determine how similar the 
elicited neural responses to individual images were in 
each fROI. We found that images with similar neural re-
sponses were also tuned to similar dimensions. This 
suggests that the dimensions are effective in capturing 
the diverse neural activities within fROIs and fine-tuned 
to specific features of the visual input (Figure 2). 

How does the tuning of these dimensions manifest 
within the cortical topographies of fROIs? To address 
this question, we projected the voxel weights onto cor-
tical surfaces, enabling visualization of the spatial or-
ganization of the dimensions. This analysis revealed a 
mixture of spatially clustered and distributed dimen-
sions (Figure 3) with patterns often consistent across 
participants, indicating a fine-grained heterogeneity 
within fROIs. Interestingly, our analysis also uncovered 
overlaps between fROIs, particularly between face- and 
body-selective areas (Taubert et al., 2022). This sug-
gests a complex interplay of unique and shared neural 
patterns in the encoding of visual information. 

 
Figure 3: Cortical flatmaps colored by independently re-
scaled voxel weights, with sparseness of dimensions 
(Hoyer, 2004) ranging from perfectly distributed (s=0) 
to perfectly clustered (s=1) for each hemisphere. 

Conclusion 
Our data-driven dimensional approach reveals the in-
herent multidimensionality of functionally selective ar-
eas in the visual cortex. Neural representations within 
these areas are interpretable, multifaceted, and effi-
ciently organized. This intricate interplay of neural di-
mensions likely plays a crucial role in how information 
is represented and processed in the brain. 
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