
Adaptive Learning Under Uncertainty With Variational Belief Deep Reinforcement
Learning

Po-Chen Kuo (pckuo@uw.edu)
Neuroscience Graduate Program, University of Washington

1705 NE Pacific St, Seattle, WA 98195, USA

Han Hou (han.hou@alleninstitute.org)
Allen Institute for Neural Dynamics

615 Westlake Ave North, Seattle, WA 98109, USA

Edgar Y. Walker (eywalker@uw.edu)
Department of Physiology and Biophysics, University of Washington

1705 NE Pacific St, Seattle, WA 98195, USA

Abstract
Animals live in environments that are inherently uncer-
tain and constantly changing. To thrive, they must learn
to mitigate uncertainty and achieve their goals. For in-
stance, when foraging in stochastic and dynamic envi-
ronments, animals learn to adapt their strategies based
on experience and trade off exploration and exploitation.
Adaptive learning under uncertainty involves not only ac-
quiring action-outcome contingencies but also discover-
ing environmental regularities. Past computational mod-
eling has largely studied the two aspects separately: con-
tingency learning through reinforcement learning (RL)
or structure learning through Bayesian inference. How-
ever, recent studies show animals may combine different
strategies, which asks for an integrated approach to un-
derstand the computational basis of adaptive learning.
Leveraging advances in deep RL and variational infer-
ence, we develop a flexible computational framework –
variational belief deep RL – to incorporate Bayesian infer-
ence with RL. Focusing on a series of dynamic foraging
tasks with various reward and temporal structures, we
show how variational belief deep RL can provide effec-
tive modeling tools for both structural inference and fast
adaptation to understand the computational and neural
mechanisms of adaptive learning under uncertainty.

Keywords: deep reinforcement learning; Bayesian inference;
decision-making under uncertainty; foraging

Introduction
To survive, animals need to adapt behavior and mitigate un-
certainty to achieve their goals despite imperfect information
from the environment. For instance, foraging is a canonical
problem of adaptive learning under uncertainty in nature in
which animals decide where and when to look for food among
multiple options. Animals and humans are found to learn
associations between actions and outcome in spite of the
stochasticity and volatility of reward sources (Behrens, Wool-
rich, Walton, & Rushworth, 2007; Bari et al., 2019). Further,
they make foraging decisions to balance the trade-off between

exploiting familiar food sources versus exploring unknown al-
ternatives (Hogeveen et al., 2022). Finally, organisms can use
knowledge of the environmental structure and dynamics to
guide efficient foraging decisions and flexibly adapt to new en-
vironments (Vertechi et al., 2020; Harhen & Bornstein, 2023).
Understanding the computational and neural mechanisms of
adaptive learning under uncertainty is a core challenge for
computational and systems neuroscience.

Two families of computational models are used to explain
how animals learn and adapt under uncertainty. Reinforce-
ment learning (RL), by learning action-outcome association
based on environmental feedback, learns to maximize cumu-
lative reward (Bari et al., 2019). However, RL models often
fall short of explaining animals’ ability to reason about and
adapt to hidden environmental states (Bromberg-Martin, Mat-
sumoto, Hong, & Hikosaka, 2010). By contrast, Bayesian in-
ference assumes animals use world models to perform infer-
ence to solve the task (Vertechi et al., 2020). However, it re-
quires many assumptions and is computationally expensive.
Recent studies indicate that animals may combine different
strategies (Le et al., 2023), which asks for an integrated ap-
proach to understand the computational basis for learning and
adaptation in uncertain environments.

Combining RL and Bayesian inference leads to the the-
ory of Bayesian RL, providing elegant solutions to optimally
trade off exploration and exploitation (Ghavamzadeh, Mannor,
Pineau, Tamar, et al., 2015). However, its use is limited due to
typically intractable computation. Building upon advances in
deep RL and variational inference, we develop a flexible com-
putational framework integrating RL and Bayesian inference to
understand the computation basis of adaptive learning under
uncertainty and demonstrate its application in neuroscience
relevant tasks for further investigating neural mechanisms.

Variational Belief Deep Reinforcement Learning
The critical computation in Bayesian RL is first performing
Bayesian inference to derive posterior distribution – or be-
lief – of the true underlying environmental states and then
learning a policy using RL algorithms. To circumvent the in-
tractable computation, Zintgraf et al. (2021) proposed an ap-



Figure 1: A) Model architecture of the proposed variational belief deep reinforcement learning framework, consisting of an
recurrent neural network (RNN) encoder to approximate Bayesian update (blue), a set of reward and state transition decoder to
promote representation learning (purple), and a deep RL policy network for decision-making (yellow). B) Example rollout in block
switch environments. Top: action and reward trajectory, the long (short) ticks indicate (un)rewarded chosen actions for each trial,
the blue curve shows policy (probability of choosing a1), and the black curve is the underlying reward probability for a1, white and
gray shading demarcates blocks. Middle: predicted reward probability by the learned model, with magenta and cyan for a0 and
a1, respectively. Bottom: entropy of the policy matches underlying environmental volatility. C) Same model as in B) but tested
in environments with longer blocks. Note how incorporation of structural prior and ongoing experience shapes the behavior. D)
Return (cumulative reward) of models trained in environments with average block length of 40 (blue), 20 (orange), and mix of 20
and 80 trials (purple), and evaluated in environments with 40-trial average block length.

proximation approach in stationary environments leveraging
variational autoencoder, deep RL, and meta-learning. Extend-
ing this approach to dynamic environments, we develop varia-
tional belief deep RL, a tractable computational framework in-
tegrating for Bayesian RL. As shown in Figure 1A, the frame-
work consists of three components: a recurrent neural net-
work (RNN) encoder which learns to approximate Bayesian
update by taking as input trial-to-trial observations st , actions
at−1, and rewards rt , and updating current belief of the true
environmental states bt = p(mt |τ:t), where mt is the environ-
mental hidden states, and τ:t is the trajectory till time t; sec-
ondly, a set of decoders predicting future reward and state
transition to make the learned latent states relevant for the
task; and finally a policy network that learns to maximize cu-
mulative rewards. The entire network is trained using meta-
learning to optimize performance across the task distribution.

To examine how the proposed model captures the compu-
tation of adaptive learning under uncertainty, we focus on the
dynamic foraging task which is widely used in neuroscience to
study how animals learn and adapt (Bari et al., 2019; Hattori
& Komiyama, 2022). A two-armed bandit task where reward
probabilities change over time, dynamic foraging can be de-
signed with different reward structures (coupled reward, inde-
pendent reward) and temporal structures (block switch, ran-
dom walk), and hence are ideal for examining how agents
learn both action-outcome contingencies and environmental
regularities for decision-making under uncertainty.

Adaptive Learning of Dynamic Foraging

We first examine how variational belief deep RL models can
effectively learn different task structures and use the learned
structural prior to mitigate uncertainty. We applied variational

belief deep RL to various dynamic foraging tasks with distinct
reward (coupled and independent) and temporal (block switch
or random walk) structures. Across different task structures,
the trained models learn strategies that utilize corresponding
structural knowledge and efficiently adapt to solve the tasks.
For instance, Figure 1B shows one example rollout in coupled
reward and block switch environments. The model trained on
environments with average block length of 40 trials demon-
strates effective choice allocation to match the underlying re-
ward probabilities and efficient choice switch when the under-
lying environmental states are changed (Figure 1B, top). Fur-
ther, the learned reward prediction model acquires not only
accurate action values but also block structure (Figure 1B,
middle). Finally, the policy network learns to adjust entropy of
its choice according to the underlying volatility, effectively mit-
igate higher uncertainty around block transitions with a more
stochastic policy and higher learning rate (Figure 1B, bottom).

Impact of Structural Priors on Generalization

To further investigate how the learned structural prior shapes
strategy, we test the same model above in an unseen envi-
ronment with average block length of 80 trials. As shown in
Figure 1C, the model’s behavior is the result of competition
and combination of inference based on structural prior and
adaptation to ongoing experience. The consequence of such
incorporation leads to sometimes early switching due to the
mismatched prior on block length acquired during training and
other times successful adjustment to avoid early switching.

Finally, we examine how different structural priors learned
by variational belief deep RL across different training task dis-
tributions affect its ability to generalize to new environments.
Specifically, in Figure 1D, when the models are trained in en-



vironments with average block length of 20 trials but tested
in environments with that of 40 trials (orange), there is a de-
crease in return due to mismatch in structural prior as com-
pared to baseline models trained on the matching environ-
ments with 40-trial average block length. However, when the
model is trained in environments with average block length of
a mixture of 20 and 80 trials (purple), even though the model
still has not seen environments with 40-trial average block
length, the model performance is comparable to the baseline
models. This demonstrates how variational belief deep RL
can extract relevant task structures during training to facilitate
efficient adaptation in unseen but related environments.

Conclusion and Discussion
To model how contingency learning through RL and struc-
ture learning through Bayesian inference jointly contribute to
adaptive learning under uncertainty, we develop variational
belief deep RL, a flexible computational framework to approx-
imate Bayesian RL. Focusing on a series of dynamic foraging
tasks, we demonstrate how variational belief deep RL effec-
tively learns distinct task structures, mitigates uncertainty by
combining structural priors and fast adaptation, and leverages
learned priors for generalization to new environments.

Further analysis is needed to examine the learned repre-
sentations of belief states and how they relate to task struc-
tures. In addition, analysis on the trained RNN encoders will
help understand how approximate Bayesian inference and RL
are achieved via network connectivity and dynamics. Finally,
variational belief deep RL offers a computational model to
investigate the neural mechanisms of how animals continu-
ously updating their beliefs about the environment and adapt-
ing their decisions to mitigate uncertainty accordingly.
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