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Abstract

Humans preferentially recall items that are presented
in close temporal proximity together — a phenomenon
known as the ‘temporal contiguity effect’. In this study,
we investigated how this phenomenon emerges naturally
when training a recurrent neural network with episodic
memory on free recall tasks, and the neural mechanisms
underlying this process. The model managed to produce
the temporal contiguity effect, and we found individual
differences in neural mechanisms for different models.
Some models learned an item index code that matches
the ‘memory palace’ technique and recalled in a forward
order, while the other models learned to recall in a back-
ward order and relied more on item-related temporal con-
text. We found that the extent to which the model changes
the context between encoding and recalling memories af-
fects the learned recall strategy. Our findings provide in-
sights into how different memory strategies may arise in
human free recall.
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poral contiguity effect

Introduction

Humans exhibit the temporal contiguity effect in free recall
tasks, where recalled items tend to be at nearby serial po-
sitions from the previously recalled item (Kahana, 1996). The
temporal context model (TCM) (Howard & Kahana, 2002;
Polyn, Norman, & Kahana, 2009) explains this by proposing a
slowly drifting temporal context that retains information about
previously studied items. This can lead to temporal contiguity
as items near the previously recalled item are more likely to
be recalled due to the similarity between their context. While
TCM accounts for the recall patterns in most participants,
some individuals use techniques like the memory palace or
‘'method of loci’ (Yates, 2013) to enhance their memory per-
formance. This involves encoding items at specific locations
within a mentally constructed environment and recalling mem-
ories by following a stereotypical route. This strategy facili-
tates forward recall, which has been found to be an optimal
solution for free recall (Zhang, Griffiths, & Norman, 2023).

In this work, we trained neural networks to study possi-
ble neural mechanisms underlying the temporal contiguity ef-
fect. The models exhibit the temporal contiguity effect, con-
sistent with human behavioral data, while the training process
does not explicitly encourage this behavior. We found different
memory strategies in different individual models, with some
models exhibiting the memory palace technique while others
relying more on a slowly drifting temporal context. We then in-
vestigated factors that affect the learned strategies and found
that the noise injected between memory encoding and recall
can make the model switch between the two strategies. Our
results provide insights into how different memory strategies
may arise in human free recall.

Methods

We used a free-recall task to train the models. There was an
encoding phase and a recall phase in each trial. During the
encoding phase, the model received a list of items as one-hot
vectors. In the recall phase, it had to recall all items in any
order. Correct recalls were rewarded (+1), while incorrect or
repeated items were penalized (-1).

The model was composed of a ‘context module’ with 128
gated recurrent units (GRUs) (Cho et al., 2014) and a ‘mem-
ory module’ with a list of slots for storing memories. During en-
coding, the GRU received a one-hot input as an item, updated
its hidden state, and appended this updated hidden state to
the memory module as an episodic memory at each time step
(Figure 1a). During recall, the model retrieved a weighted av-
erage of memories from the memory module based on cosine
similarity between the memories and the current hidden state,
then used the retrieved memory as an input to update the
GRU and produce an output policy over all possible items (Fig-
ure 1b). This weighted averaged memory was used instead of
the single most similar memory to make the memory retrieval
process differentiable during training (Graves, Wayne, & Dani-
helka, 2014). The memory module was cleared at the start of
each trial to allow the storage of new memories.

We trained the model with the advantage actor-critic (A2C)
reinforcement learning algorithm (Mnih et al., 2016; Jensen,
2023). The last reward and last action (recalled item) sampled
from the policy were returned to the model as inputs at the
next time step (Wang et al., 2016). To encourage the model
to recall only one memory at a time and inhibit the retrieval of
other memories, we added a negative entropy regularization
term on the memory similarity vector in the loss function.

We trained 50 models with different random seeds for dif-
ferent amounts of noise injected into the hidden state before
the start of recall. Adding noise reduces the information about
the last items in the hidden state, allowing the model to more
flexibly choose where to start recalling instead of starting from
the end of the list.

To characterize the recall strategy of the models, we used
two metrics to quantify the contiguity effect of a model: for-
ward asymmetry evaluates the tendency of a model to recall
an item presented after the previously recalled item instead of
before the previously recalled item, and temporal factor quan-
tifies the tendency of an agent to recall an item that is in close
temporal proximity to the previously recalled item.

Results

We used a k-means algorithm to cluster the models based on
the forward asymmetry and the temporal factor, as well as the
decoding accuracy of item index (position of items in the list)
and item identity. We observed two clusters of strategies in
models with different random seeds and the amount of noise
added to the hidden state at the start of recall (Figure 1c,d).
The main factor that separates these two groups was the for-
ward asymmetry, with models that tend to recall more in a
forward order (forward asymmetry > 0.5) falling into the same
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Figure 1: (a) Model structure during memory encoding. (b) Model structure during memory retrieval. (c) Clustering of models in the space of
forward asymmetry and temporal factors. (d) Decoding accuracy of item index for the two clusters of models. (e-g) The first cluster of models.
(e) Conditional recall probability as a function of the relative position of items in the list. (f) The first two principal components (PCs) of the
hidden state across 10 trials during the encoding (left) and recall (right) phases. (g) Decoding accuracy of item identity (red) and item index
(green) from an increasing number of PCs of the hidden states, together with the cumulative explained variance by the PCs (black). (h-j) Same
as (e-g) for the second cluster of models. (k) Relation between task performance and decoding accuracy of item index. (I) Relation of task
performance with temporal factor. (m) Forward asymmetry as a function of the proportion of noise injected between the encoding and recall
phases, with error bars representing the standard deviation of models with different random seeds. (n) The proportion of models that fall in

each cluster as a function of the noise proportion.

group and models that tend to do more backward recall (for-
ward asymmetry < 0.5) falling into another.

The first group of models learned to mostly recall in a
forward order by encoding the item index information in the
hidden state of the recurrent layer (Figure 1e). The hidden
state of this group of models followed very similar trajecto-
ries across trials in both the encoding and recall phases, re-
gardless of what specific items were presented in the input list
(Figure 1f). This allowed the model to sequentially reinstate
each hidden state from the encoding phase to retrieve the cor-
rect memories. We also found that item index was encoded
in a low-dimensional hidden state space, and that item iden-
tity was encoded in a higher-dimensional space (Figure 19).
The behavior of this group of models resembles the memory
palace technique, where subjects mentally traverse the same
set of locations along a stereotypical path during encoding
and recall, in a pre-constructed cognitive map. Conversely,
the second group of models had a higher tendency to recall in
a backward order (Figure 1h). There was a significant differ-
ence in the hidden state trajectories across trials with different
item content (Figure 1i), and we can decode the item iden-
tity much better than the item index (Figure 1j). This group of
models exhibits a more TCM-like recall pattern.

For each group of models, the temporal factor increased
as the tendency of recalling in a particular order increased
(Figure 1c). The decoding accuracy of item index information

also increased as the tendency to recall in either forward or
backward order increased (Figure 1d), though the decoding
accuracy was overall lower for models that recall in a back-
ward order. We found that the decoding accuracy of item in-
dex and the temporal factor were both positively correlated
with the free recall performance of the models (Figure 1k, ).
These results suggest that the model can improve its recall
performance by learning to recall with high temporal contigu-
ity, which matches findings in human experiments (Sederberg,
Miller, Howard, & Kahana, 2010). The use of item index infor-
mation can increase recall performance, consistent with the
improvement in free recall performance of humans from using
the memory palace technique.

We were able to influence the strategy used by the models
by changing the proportion of noise injected into the hidden
state before the start of recall. We found that the forward
asymmetry increased as the proportion of noise increased
(Figure 1m), and there was a larger number of models that
learned to recall in a forward order when the noise was high
(Figure 1n). This suggests that models with more context
about the last few items in the list tend to recall in a backward
order and rely less on item index information. When the model
has little information about the context of the last few items, it
can avoid recalling from the end of the list, thus managing to
begin from the start and recall in a forward order by relying on
item index information to obtain optimal performance.
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