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Abstract

Functional connectivity (FC) is a well established tech-
nique used to elucidate how different brain regions inter-
act. However there are limited studies investigating these
interactions in language processing. Here, we address
this by leveraging human electrocorticography (ECoG)
data during language perception and production. The
high spatiotemporal resolution and signal-to-noise ratio
of ECoG data, enable robust classification of connectiv-
ity patterns across different cognitive states spanning
language perception through production using a multi-
class Support Vector Machine (SVM) method. The re-
sults demonstrate dissociable cognitive states based on
FC patterns, with some overlap between speech produc-
tion and baseline states. Further, examining the model
contributions (hyperplane boundaries) revealed unique
spatial connections that characterize specific states. We
find consistent patterns across participants, with dis-
tinct connectivity signatures for auditory perception, vi-
sual tasks, and speech production across peri-sylvian
cortices. Taken together, this research highlights the po-
tential of functional connectivity in advancing our under-
standing of language processing.
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Introduction

Functional Connectivity (FC), is a prevalent technique in neu-
roimaging used to elucidate brain networks and their dy-
namics by examining how brain regions communicate dur-
ing cognitive tasks. A significant body of the literature fo-
cuses on intrinsic networks derived from resting-state data
(Fox & Raichle, 2007) as well as cognitive tasks (Cole, Bas-
sett, Power, Braver, & Petersen, 2014). However, a gap exists
in understanding how these specific connections relate to lan-
guage processing during perception and production. This is
compounded by motor artifacts that non-invasive techniques
are sensitive to.

Human electrocorticography (ECoG) data presents a
unique opportunity to investigate the neural mechanisms in-
volved in language perception and production with a com-
bined high temporal and spatial resolution. A large body of
work has investigated speech perception and production us-
ing ECoG, however there is a paucity of functional connectivity
studies. Our goal in here is to bridge the existing gap in the lit-
erature by exploring the FC patterns across various stages of
language perception (auditory, visual) and production aiming
to elucidate the neural interactions that support these func-
tions.

Data Collection and Preprocessing

We recorded Electrocorticography data from ten participants,
while they performed a battery of language tasks (Auditory
word repetition, picture naming and visual word reading). The

battery was designed to elicit the same set of words across the
different tasks. We extracted the analytic amplitude of high-
gamma broadband using a band-pass filter within 70-150 Hz
followed by a Hilbert transform. We focused on recordings
during three event-related stages of the tasks: Comprehen-
sion, word production and baseline. For our analysis, in each
stage we focused on 500ms intervals relative to the event time
stamps. Putting all tasks together, we defined five cognitive
states: Auditory perception, picture perception, word read-
ing perception, speech production (shared by all tasks), and
baseline (shared by all tasks). For each participant, we then
computed Pearson’s Correlation as the measure of functional
connectivity between electrodes in each trial of these states.
This resulted in symmetric square correlation matrices with
the size of number of electrodes.

Results

First, we were interested in identifying the predominant con-
nections in each cognitive state. To do so, we looked into
the distribution of all the functional connections for each par-
ticipant separately, and identified the most significant ones
(Laplacian distribution; p-value<0.05). In Figure 1.A., we are
plotting the significant connections (red for positive and blue
for negatively correlated) in a single exemplar subject. Com-
paring the connections across the cognitive states, we show
many overlapping connections. Although this analysis shows
the strongest connections present, it fails to to identify con-
nections that specifically dissociate different cognitive states
(i.e. auditory perception, speech, etc.).

In order to address this, we employed a classification ap-
proach based on the functional connectivity matrices. These
were classified using a linear Support Vector Machine (SVM)
multi-class model. The feature space was created by flatten-
ing the upper triangle of each connectivity matrix. Each trial
in each cognitive state is considered a single observation and
matches a single class label. Using SVM, we trained five clas-
sifiers, each producing a decision boundary hyperplane sepa-
rating the observations of one class from all others. More de-
tails on this analysis is shown in Figure 1.B.. We measured the
classification accuracy for each participant using 5 fold cross-
validation and plotted the confusion matrix of the exemplar
subject in Figure 1.C. The results show high classification ac-
curacy across cognitive states, with some confusion between
speech production and baseline. Thus, the cognitive states
can be linearly separable in the feature space (corresponding
to electrode pairs).

The linear SVM classifier gives us the ability to delve deeper
into the decision boundary hyperplanes, and since they have
the same dimensionality as the functional connectivity matri-
ces, we plot them on the brain as connections. We use a
similar distribution approach to assess significant weights in
the hyperplanes and their corresponding connections. These
connections represent the dimensions in the feature space
that mostly explain the differences between cognitive states,
and their weights show the direction and importance. For ex-



ample, a positive weight means for that specific class, the cor-
responding connection is more likely to have a large positive
value, thus the two connecting regions have a more correlated
neural activity in that state. In Figure 1.D. we show these con-
nections for each cognitive state in the same exemplar partici-
pant. Comparing the results with Figure 1.A., we can see that
the connections have become more unique and sparse, pro-
viding a better representation of the underlying state-specific
connections.
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Figure 1: Functional Connections in different cognitive states
in an exemplar subject. A) Significantly strong connections in
each cognitive state (laplacian distribution; p-value<0.05). B)
Classification framework. The SVM classifies each state com-
pared to the rest, and results in a decision boundary hyper-
plane for each class. C) Classification confusion matrix using
5 fold cross-validation shown for the same subject. The class
labels are as follows: AudRep: Auditory perception, PicN: pic-
ture perception, VisRead: word reading perception, speech
and baseline. D) Connections with the most significant weight
(laplacian distribution; p-value<0.05) in the separating hyper-
plane for each cognitive state.

We applied the above framework to all the participants. In
Figure 2.A. we report SVM classification performance across
all participants. The results show that the cognitive states
are still linearly separable in each patient’s specific feature
space. Shifting back our focus on the separating hyperplanes
of each state, we show the connections with the most signifi-
cant weights across all the participants in Figure 2.B.. For au-

ditory perception, we observe a majority of connection within
superior temporal gyrus. However, significant connections
from superior temporal to dorsal pre-central and inferior frontal
gyri are observed. These latter connections are consistent
with the findings in the literature regarding the involvement of
these frontal regions in language perception and cued pro-
duction (Flinker et al., 2015; Khalilian-Gourtani et al., 2022;
Ozker, Doyle, Devinsky, & Flinker, 2022).

For both visual tasks we observe significant connections
between occipital cortex and inferior frontal and pre-central
gyri (Whaley, Kadipasaoglu, Cox, & Tandon, 2016). Notably,
the visual word reading task exhibits some significant connec-
tions within the speech motor cortex that can be attributed to
the faster nature of this task, i.e. participants start to read
the words as soon as they appear as the cue, while in picture
naming, retrieving a word from a drawing requires semantic
access and a longer processing time.

During speech production, we observe significant connec-
tions across the speech motor cortex. Interestingly, we ob-
serve a series of connections between speech motor cortex
and superior temporal gyrus with a negative sign. This ob-
servation can be attributed to the dynamics of STG process-
ing the feedback of the patients’s own voice; i.e. as the pa-
tient speaks STG is activated due to auditory feedback of self-
produced speech.
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Figure 2: Functional Connectivity classification results over all
participants. A) Classification performance metrics. Points
indicate single participants, and the error bars show the mean
and standard error over all participants. B) Overlaying all the
connections with the most significant weights in the separating
hyperplane, among all participants.

Conclusion

In conclusion, our study has offered valuable insights into the
unique functional connectivity patterns during language pro-
cessing. We identified significant connections within different
cognitive states, revealing the importance of network interac-
tions above and beyond local neural activity. Given that the
significant connection weights in the baseline state were al-
most all negative (i.e. less or negatively correlated compared
with other tasks), it likely indicates anti-correlation at rest.
Taken together, these findings advance our understanding of
functional connectivity across perception and production and
underscore the potential of this approach in elucidating neural
mechanisms underlying language processing.
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