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Abstract
Recognizing people’s interactions in visual scenes is a
crucial human ability; however, the neural computations
that enable this remain largely unknown. Prior work
demonstrates that a bottom-up, visual model with rela-
tional inductive biases (based on graph-neural-networks)
successfully captures human behavior in social inter-
action judgments, suggesting that relational visual rep-
resentations may underlie this ability. If relational vi-
sual computations are fundamental to social perception,
then we should find evidence for them in brain regions
that support social perception, such as lateral occipi-
tal temporal cortex (LOTC) and posterior STS (pSTS).
To test this, we collected fMRI data from adults watch-
ing animated shape videos of two agents interacting in a
friendly, neutral, or adversarial manner. Preliminary anal-
ysis using whole-brain-searchlight representational simi-
larity analysis (RSA) shows a correlation between neural
and behavioral representations in both the above social
perception regions and the theory of mind network. The
graph-neural-network model also explains responses in
LOTC and pSTS. In contrast, a matched bottom-up model
without relational inductive biases correlates poorly with
neural data. Our work suggests brain regions in LOTC
and pSTS that support social interaction perception rely
on relational visual information, and provides a novel
modeling framework for investigating the neural compu-
tations underlying social perception and cognition.
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Introduction
Every day we see social interactions between people and ex-
tract rich information about their actions and intentions. What
computational processes in the human mind and brain en-
able us to extract such rich information from visual scenes?
Previous studies have identified brain regions along the lat-
eral occipital temporal cortex (LOTC) and superior temporal
sulcus (STS) involved in social interaction recognition, but to
date, there are no computational models that match neural re-
sponses in these regions (McMahon & Isik, 2023). Emerging
behavioral and neural evidence supports a bottom-up theory,
suggesting that social interaction recognition is primarily a vi-
sual process, distinct from mental-state inference (Abassi &
Papeo, 2020; Isik et al., 2017; Masson & Isik, 2021; Papeo
et al., 2017; Hafri et al., 2018; Su et al., 2016; Vestner et al.,
2019; Gandolfo et al., 2024; McMahon & Isik, 2023). Previ-
ously, this hypothesis was dismissed due to the poor perfor-
mance of bottom-up, visual models in matching human judg-
ments of social interactions (Ullman et al., 2009; Isik et al.,
2020). However, a recent study showed that a bottom-up
model, equipped with relational inductive biases (based on
a graph-neural-network, called SocialGNN), can match peo-
ple’s judgments about social interactions (e.g., whether an in-
teraction is ”friendly”, ”neutral”, or ”adversarial”) and performs

significantly better than a matched model with the same input
and training, but without the relational inductive bias (Visual-
RNN) (Malik & Isik, 2023). These results suggest that rela-
tional information may be critical to human social interaction
representations.

Here we ask whether the brain regions representing so-
cial interactions rely on relational visual representations as
captured by SocialGNN. To achieve this, we employed repre-
sentational similarity analysis (RSA) to compare neural data
with behavior and two computational models of social interac-
tion recognition: SocialGNN (Fig. 1b), the bottom-up graph-
neural-network based model (Malik & Isik, 2023), and Visu-
alRNN (Fig. 1c), a control model that shares the same broad
architecture and input as SocialGNN but lacks the graph struc-
ture and processing (Malik & Isik, 2023).

Methods

fMRI Experiment

Participants This study received ethical approval from the
Johns Hopkins School of Medicine Institutional Review Board.
fMRI data was collected from four participants who provided
written informed consent before the experiment and were
monetarily compensated.

Stimuli Our stimulus set consisted of 50 videos from the
PHASE dataset (Netanyahu et al., 2021), which includes 500
videos of two agents moving around in a simple 2D envi-
ronment, navigating around obstacles and manipulating ob-
jects, designed to resemble real-life social interactions. Each
video was generated via a physical simulator and hierarchical
planner, based on specified goals of the agents, their rela-
tive strengths, and the objects in the scene. For more details
on the dataset see Netanyahu et al. (2021). We selected 50
videos, and trimmed each to keep the middle 10 seconds.

Experiment Paradigm and Data Preprocessing Follow-
ing an anatomical scan, participants watched each of the 50
videos, five times across separate runs. The video presen-
tation order in every run was shuffled. Data preprocessing
was done using fMRIprep 21.0.2 (Esteban et al., 2019), and
we then used GLMsingle (Prince et al., 2022) to estimate per-
voxel, per-video BOLD responses.

Computational Models and Behavioural Data

SocialGNN SocialGNN is a graph-neural-network model
that incorporates relational inductive biases to recognize so-
cial interactions from visual scenes (Fig. 1b) (Malik & Isik,
2023). For each video, it takes in a graph representation (Fig.
1a, right) for each frame (Fig. 1a, left). Specifically, the nodes
in these graphs represent agents/objects in the scene, node
features are visuospatial features of each entity (such as cur-
rent position, velocity, etc.), and binary edges represent physi-
cal contact between the entities. At each timestep, SocialGNN
processes new input graphs (GNN module), and combines it
with the learned representations from prior timesteps (LSTM
module). Representation at the final time-step is passed



Figure 1: Computational Models Architectures and Represen-
tations. Output from the last RNN step (circled in red) is taken
as the model’s representation of that video

through a linear classifier to predict the type of social inter-
action (“friendly”, “neutral”, or “adversarial”). For our analysis,
SocialGNN was trained on 400 videos, and predictions were
made on the 50 held-out videos used in the fMRI experiment.
We took the output from the last RNN step as the model rep-
resentation for each video to create the representational dis-
similarity matrix (RDM) (Fig. 1b).

VisualRNN VisualRNN has the same broad RNN architec-
ture and input information as SocialGNN but lacks the graph
structure and graph processing (Fig. 1c) (Malik & Isik, 2023).
Essentially, the node features used in the visual graphs for
SocialGNN input, are instead concatenated for all entities in
the scene and directly input to the LSTM. Like SocialGNN, we
made predictions using this model on the 50 held-out videos
used in the fMRI experiment, and then created an RDM using
the output from the last RNN step.

Behaviour To compare fMRI responses to human judg-
ments on the PHASE dataset, we utilized human judgments
from a prior study where participants rated the relationship in
each video as ’friendly’, ’neutral’, or ’adversarial’ (Malik & Isik,
2023). There were at least ten ratings per video and we used
the normalized counts of these as the representation to create
the human behavior RDM.

Results
To assess the representational similarity between various
brain regions and computational models, as well as behav-
ioral judgments, we conducted a whole-brain searchlight RSA
asking where the representational geometry of brain activity,
evoked by the 50 videos, is explained by (i) human behavioral
judgments and (ii) model representations of the those videos.
We used the pattern of estimated BOLD responses for each

video as the representation to create neural RDMs. All RDMs
(neural, model, behaviour) were based on Pearson’s correla-
tion distance.

There were two main findings. First, we found a correlation
between neural RDMs and the behavioral RDM within the vi-
sual cortex, lateral occipital temporal cortex (LOTC), superior
temporal sulcus (STS), temporoparietal junction (TPJ), and
medial prefrontal cortex (mPFC) (Fig. 2a). This similarity con-
firms prior work showing that these regions play a critical role
in inferring social interactions from visual scenes (McMahon &
Isik, 2023). Second, SocialGNN correlated with many of the
regions showing a match to behavior, including the LOTC and
posterior STS (Fig. 2b). In contrast, despite its similar input
and training, VisualRNN did not exhibit any correlations with
neural representations in these brain areas (Fig. 2c).

Figure 2: Whole-brain searchlights RSA (Group-Level Z-
Maps).

Conclusion
Our preliminary findings reveal a representational match be-
tween human social interaction judgements and regions pre-
viously implicated in both social interaction perception (includ-
ing LOTC and the STS) and theory of mind (including mPFC
and TPJ), replicating prior findings. We further find that So-
cialGNN, a bottom-up model with relational inductive biases,
matches neural representations in LOTC and the STS signifi-
cantly better than a matched visual model. These results pro-
vide the first computational modeling account of neural activ-
ity in these brain areas, and preliminary evidence that these
regions may be structuring visual information relationally to fa-
cilitate social interaction recognition. In ongoing work, we are
validating these findings with more experimental subjects. We
are also exploring additional models to understand how the
human brain combines visual processing and mental state in-
ference to recognize social scenes.
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