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Abstract
Enabling episodic memory in a robot or other AI agent
would lead to better functioning AI as well as creating op-
portunities for modeling theories of human memory. An
important step toward such an episodic memory system
is developing representations that can be used to accu-
rately recover information about past events. We intro-
duce a method to obtain such representations with an ar-
tificial neural network model. To study episodes of realis-
tic length, we utilize ego-centric video data from a dataset
of an agent performing household chores in a simulated
environment. In the first training phase, we use a trans-
former model to encode frames from this video into com-
pact vector embeddings — embgrams. Next, using the
embgrams as input, a second transformer model is fine-
tuned to provide natural language descriptions and an-
swers to questions about the episodes. Our results show
that the embgrams facilitate retrieval of episode-related
information. Importantly, we find that the usefulness of
the embgrams as stores of information significantly de-
pends on the task the encoding transformer performs
during their generation.
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Introduction
While there has been a great deal of cognitive science re-
search on developing models of episodic memory, the ma-
chine learning community has devoted much less attention to
trying to incorporate something analogous to episodic mem-
ory in robotics or other ML systems. Cognitive science efforts
have naturally prioritized models that can help further our un-
derstanding of episodic memory in humans or other animals;
these often involve storing small amounts of data such as still
images (Spens & Burgess, 2024). Machine learning models,
by contrast, process much larger amounts of information but,
with some exceptions, notably in reinforcement learning, have
typically not included anything analogous to episodic mem-
ories (Nematzadeh, Ruder, & Yogatama, 2020; Lampinen,
Chan, Banino, & Hill, 2021).

In an effort to begin bridging this divide, we introduce a
method to form compact representations of long action se-
quences from simulated ego-centric video frames using a
transformer-based model. We demonstrate that these rep-
resentations can later be used in ways similar to episodic
memory: recounting a natural language narrative of what hap-
pened; answering questions about what happened; and re-
covering what actions happened after any arbitrary point in
the episode.

Given that the transformer model treats these vectors as
embeddings, we refer to these embedding vectors as emb-
grams, following the name of the physical basis of human
memories, engrams. We do not address the storage or re-
trieval of embgrams here, but we suggest that their structure
will allow them to be more easily localized and understood
than the notoriously difficult to identify engrams (Lashley,
1950; Eichenbaum, 2016).

What humans attend to affects what we remember (Aly &
Turk-Browne, 2017). We observe something similar for mod-
els trained to produce embgrams. By varying the tasks used
to train the embgram-generating models, we discover that the
content the model is prompted to attend to has a marked ef-
fect on the usefulness of the resulting embgrams as stores of
episodic information.

Methods
Data
We use episodes of action sequences from a dataset
(Shridhar et al., 2020) containing ego-centric video of an
agent in a virtual environment (Kolve et al., 2017) performing
complicated, multi-step tasks, e.g. washing, slicing, and re-
frigerating an apple. We use a subset of frames (an average
of 50 per episode, matched to each action) from the video
along with a second dataset (DeChant, Akinola, & Bauer,
2023) of natural language questions and answers paired to
each episode.

Model
A multimodal artificial neural network model including a T5
encoder-decoder transformer (Raffel et al., 2020) is trained to



Figure 1: Depiction of the creation and use of an embgram. In step one, an episode is encoded into representations by the T5
encoder. The representations corresponding to word embeddings (gray) are discarded; those corresponding to the input images
(multicolor) are summed into one embgram vector. In step two, this embgram is used as the input along with a question.

perform tasks based on video frames from each episode in
the training set. Image frames are encoded by a CLIP encoder
(Radford et al., 2021) and projected into the T5’s encoding
space by a small bridge neural network. The T5 model’s en-
coder is fine-tuned to generate encodings of each frame con-
ditioned on a natural language question. These encodings are
then summed to form an embgram, a single vector represen-
tation of the episode. This embgram then serves as input to
a second T5 transformer which is trained to answer natural
language questions about the episodes without access to the
original video frames. See Figure 1 for a schematic.

Experiments

We conduct two sets of experiments. In the first set, we ob-
tain embgrams from a model trained to perform full narration
of the episode (step 1 in Figure 1). We then train a new model
on a variety of question answering tasks using the embgram
vectors as input (step 2 in figure 1). For the second set of ex-
periments, we instead generate embgrams by training a model
to perform additional question answering tasks beyond narra-
tion. The resulting embgrams then serve as input to a model
that we train to generate full narrations.

In addition to narration, the question types asked are: Ob-
ject either/or : “was there an apple or CD?” and Action just
after : “what did you do just after go to the refrigerator?” A fi-
nal, fourth type of prompt is Act from history, which asks the
model to output the next five actions the agent takes in the
episode, given a set of image frames up to a particular point.
In the encoding phase this trains a model to use the images to
choose actions. In the second phase, the generated embgram
is provided to the model which is trained to use it to recover
the sequence of actions that took place.

Results
The first set of experiments shows that embgrams can be
used to answer some questions about an episode at close
to the same level of accuracy as a baseline model trained
directly on the original video frames. Narratives are approx-

Table 1: Accuracy for question answering and narration from
embgram vectors by question type, compared to a baseline
accuracy of the model trained directly on the video frames.
These embgrams were all generated by the narration model.

Question / prompt Accuracy % difference
from baseline

Narration 37.4% -21.3%
Action just after 77.2% -5.8%
Object either/or 97.2% +1%
Act from history 38.5% +22.1%

imately 20% less accurate. Recovery of actions taken at a
given point in the episode is more accurate than a baseline
model which is not given an embgram but instead can only
predict actions based on prior images. See Table 1. All re-
sults are reported from a validation set of previously unseen
episodes and environments.

The effect of attention on memory The second set of ex-
periments demonstrates that the usefulness of embgrams as
stores of episodic information is determined by the task the
model performs during their generation (see Table 2). The
“Action just after” questions result in embgrams which are
nearly as useful in producing full narratives as the narration
prompt is, while those produced by a model prompted to pre-
dict a sequence of actions (“Act from history”) are slightly less
than half as accurate. Object-focused questions result in em-
bgrams with near zero accuracy in producing narratives.

Discussion

We found that a transformer-based model can be used to
generate and use embgram vectors representing episodes of
extended action. The usefulness of these embgrams is de-
termined by the task the model performs while encoding the
embgrams, which influences what parts of the input the en-
coder’s self-attention mechanism attends to. We propose that



Table 2: Generating narrations from different types of emb-
grams: accuracy of producing narrations from a single emb-
gram vector derived from models trained for the listed tasks.

Source of embgrams Accuracy
Narration model 37.4%
Action just after question model 33.2%
Object either/or model 0.8%
Act from history only model 14.6%

this parallels the role attention plays in the formation of hu-
man memories. A model trained to answer questions about
objects generates embgrams which are completely unable to
recover a full narrative. More notably, a model which is trained
to predict what actions to take during an episode does not
produce very useful embgrams. Given that robots or other AI

agents will likely focus their attention on aspects of the envi-
ronment or other inputs which are useful when taking actions,
this suggests that the creation of representations for episodic
memory purposes might be challenging. A separate attention
stream may be needed in order to form useful representations
of episodes for later recall.

Using transformer models to create embgrams opens up a
variety of ways to study episodic memory-like processing in
a machine learning context, with potential applications to the
study of human memory. Future work will address storage and
retrieval, improved methods to compress episodic represen-
tations into embgrams, recall of visual stimuli, and investigate
how information is encoded in an embgram.
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