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Abstract
The ability to accumulate evidence and make timely per-
ceptual conclusions in a rapidly changing environment is
important in many ecological contexts. Here we propose
a recurrent convolutional neural network (RCNN) that can
predict human decision times of early multi-class recog-
nition on dynamic handwriting images. We adapted the
original RCNN to perform multiple binary decisions and
to have two accept and reject thresholds for each class,
to model human uncertainty thresholds. With these mod-
ifications, our model achieves high classification accu-
racy while better predicting human decision times than
the original RCNN and model lacking recurrence. More-
over, the uncertainty of our model aligns well with human
perceptual ambiguities early in the stimulus sequences.
Our modeling results thus support the notion that recur-
rence is an important component in perceptual decision-
making models for dynamic visual stimuli.

Keywords: convolutional neural network; recurrent neural net-
work; visual recognition; decision making; dynamical system

Introduction
The ability to accumulate evidence and make timely percep-
tual conclusions in a rapidly changing environment is impor-
tant in many ecological contexts. Convolutional neural net-
works (CNNs) have emerged as standard models of the rep-
resentational hierarchy (Yamins et al., 2014; Kriegeskorte,
2015). While CNNs process images in a feed-forward man-
ner, visual cortical circuits are highly recurrent, which could
play an important role in dynamic object recognition (Kietz-
mann et al., 2019). Recurrent CNNs (RCNNs) have been
proposed that can predict reaction times and better account
for dynamics in the visual hierarchy, but still for static images
(Spoerer et al., 2019) or a sequence of different static scenes
(Sörensen et al., 2023). Here we explore the application of
RCNNs for dynamic visual stimuli consisting of naturalistic
continuous movements. Specifically, we advance the RCNN
to predict human decision times for early multi-class recogni-
tion of digits for dynamic handwriting images.

Data
Visual stimuli
We make use of an existing handwriting dataset (Cho & Kim,
2023) to produce visual stimuli. This dataset contains 10 dig-
its from 0 to 9, for which handwriting has been temporally dig-
itized using a stylus and tablet. Samples for each digit are
written exclusively using one motor program except 9 includes
two variants. There are 1000 samples for each digit, which are

divided into training, validation, and test sets with proportions
of 80%, 10%, and 10%, respectively. Images are temporally
sampled at a rate of 10Hz. The first image is always blank,
and no duplicate images appear in an image sequence. The
initial stroke of digits starts from the image center to prevent
recognition by the starting position. Finally, the maximum du-
ration of the data is 1.1 seconds or 12 time steps. The dataset
has two variants: For the Σ-dataset, each sample consists of
a sequence of images depicting the tracing of a digit, whereas
for the ∆-dataset each image depicts only the newly added
pixels between successive frames in the Σ-dataset.
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Figure 1: Different sequences of 128-by-128 images of the
same handwriting of digit 5 in both the Σ- and ∆-datasets.

Human decision time
Decision time (DT) was collected for samples in the validation
and test sets for a human participant. For each sample in the
Σ-dataset, the participant viewed an image in the sample for
as long as the participant wanted, and could then decide its
final digit class or move on to the subsequent image in the
sample. The participant was asked to decide the final digit
class as early as possible with certainty. Human DT is de-
fined as the time index corresponding to the image for which
the participant chooses to assign the final digit class. If no de-
cision has been made by the last image, DT becomes the last
index of the sample because the final image is not ambiguous.

Model
Our model is based on the RCNN (Spoerer et al., 2019), for
which we propose several modifications. Specifically, we re-
duced the number of filters at each RCNN layer by a fac-
tor of 8. We added one additional 256-unit dense layer be-
fore the readout layer for accumulating features, and the final
sigmoid layer performs 10 binary decisions upon the accu-
mulation. As such, the accumulation layer collects evidence
(Gold & Shadlen, 2007), rather than the 10 decisions of the
softmax inputs as in the original RCNN. Batch normalization
was not included, as we found it resulted in instability. The
∆-dataset is provided as input to the model, as it has no
mechanism to attend to new signals as humans can. The
model is trained to minimize the binary cross-entropy (BCE)
Lb = − 1

T ∑
T
t=1 ∑

10
i=1[pi(t) ln p̂i(t)+ (1− pi(t)) ln(1− p̂i(t))] ,

given time steps T = 11 except the first step, one-hot targets
(p1(t), ..., p10(t)) and predictions (p̂1(t), ..., p̂10(t)). The loss



Figure 2: Our model’s prediction dynamics for each digit for the test ∆-dataset. The model decreases the probabilities for less
probable digits and maintains higher probabilities for more probable ones. Probabilities for digits with similar early shapes —
(0,6), (2,3), (8,9), and (1,5) — remain higher. Predictions for the digit 7 diverge from the others due to its unique early shape.

Table 1: Comparison of the test performances of our model
(Model 3) to those of other models under different settings.

Model 1 2 3 (ours) 4
Output softmax sigmoid sigmoid sigmoid
Loss CCE BCE BCE BCE
#Thresholds 1 1 20 20
Recurence O O O X

Performance (mean ± STD; 30 seeds/model)
DT MAE .636 ±.058 .578 ±.045 .493 ±.032 .668 ±.029
Accuracy .950 ±.042 .957 ±.049 .994 ±.003 .989 ±.006

of the original RCNN with the softmax output is the categor-
ical cross-entropy (CCE): Lc = − 1

T ∑
T
t=1 ∑

10
i=1[pi(t) ln p̂i(t)].

For the first blank image at time t = 0, the loss LKL =
1
2 ∑

10
i=1[ln[

1
2/ p̂i(t)]+ ln[ 1

2/(1− p̂i(t))]] is added to either Lb or
Lc to set the equal initial probabilities. The same optimization
procedure as the original RCNN was applied with a batch size
of 8 for 30 epochs. Model parameters are selected at the end
of the epoch where the mean absolute error (MAE) between
human and model DTs is the minimum for the validation set.

The original RCNN makes a decision if −∑
10
i=1 p̂i ln p̂i ≤ θs.

Our model makes a decision if one of the 10 units satisfies
ln p̂i ≥ ui, and all the other 9 units satisfy ln(1− p̂ j ̸=i)≥ l j ̸=i,
reflecting that it should be certain that the digit is one unique
class and not the other 9. There exist 20 thresholds of 10
upper and lower thresholds, ui and li, respectively. If both
models have not decided, the prediction at the terminal time
step is read. Model DT is defined as the time step when the
decision is made. The thresholds are computed using the fol-
lowing procedure. At the human DT of all validation samples,
read out the prediction of the model, then find correct pre-
dicted samples X . Then, compute θs := EX [−∑

10
i=1 p̂i ln p̂i].

For all correct predicted samples Xi of each digit i, compute
ui := EXi [ln p̂i] and l j ̸=i := EXi [ln(1− p̂ j)]. These multiple
thresholds are based on our hypothesis that a decision is
made according to different levels of uncertainty with respect
to each class and its rejection and acceptance.

Results and Conclusions
We find our model performs better at predicting DTs and
classes than previous designs as shown in Tab. 1. The sig-
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Figure 3: Human and model DTs for all correct test samples.
(a) The distribution of human and model DTs on an exponen-
tial scale. (b) The distribution of errors. In 57% of model DTs,
there is no error, and 95% have absolute errors less than 2.

moid outputs with the BCE loss (Model 2) predicted DT bet-
ter than the softmax outputs with the CCE loss (Model 1),
which the original RCNN uses. The softmax for Model 1 of-
ten resulted in drastic changes in predictions since explod-
ing activity occurs to win against competing classes, and the
CCE does not directly train output probabilities to decrease,
whereas the BCE does. Decision-making with the 20 thresh-
olds (Model 3) contributed to better prediction on DT than that
with the single threshold (Model 2). Removing recurrence
deteriorated DT prediction (Model 4). This supports the no-
tion that recurrence is an important component to model the
dynamics of biological vision (Kietzmann et al., 2019). Our
model revealed that model DT had a linear relationship with
human DT (Fig. 3a). Moreover, 95% of model DTs were
within one time step of human DTs. (Fig. 3b). The uncertainty
of our model in response to ambiguous early stimuli aligned
well with human perceptual ambiguities early in the stimulus
sequences (Fig. 2).

Therefore, our model, which involves the sigmoid outputs,
BCE loss, and two upper and lower thresholds for each class,
predicts human DT better than the models with the previous
strategies: the CCE loss and single thresholding. We also
found that including recurrence in the model allowed a signifi-
cant improvement in predicting human DT.

For future work, our model should be assessed for data that
include more participants, who have different levels of cer-
tainty in decision-making. It could also be applied to more
naturalistic tasks, such as activity recognition from videos.
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