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Abstract

Grid cells in the medial entorhinal cortex (MEC) and place
cells in the hippocampus fire only at specific locations in
the environment. Their firing fields are known to change
to spatial and nonspatial alterations of the environment.
A recent study showed that their receptive fields move to-
ward rewards after rats learn the locations of the rewards.
We hypothesize that this change in receptive fields could
help animals learn better. To verify this hypothesis, we
use receptive fields as features in a simulated agent per-
forming Temporal Difference learning. First, we observed
that an evolutionary algorithm would move mathematical
place cells closer to rewards to speed up learning. Sec-
ond, using rat MEC neural data from the study, we found
that the simulated agent can learn better with the post-
learning receptive fields when evaluating post-learning
behavior. These results show that distortions in spatial
receptive fields could be a feature of the brain to help an-
imals perform learning tasks.

Keywords: grid cells; place cells; spatial field remapping; tem-
poral difference learning; reinforcement learning

Introduction

Grid and border cells in the medial entorhinal cortex (MEC)
and place cells in the hippocampus are known to encode
spatial information, firing at specific locations in the environ-
ment (Tukker et al., 2022; Moser, Moser, & McNaughton,
2017). The MEC cells have been widely hypothesized to
have environment-independent spatial firing patterns, though
this has been challenged by recent experiments recording the
neurons under more naturalistic conditions, such as in irregu-
larly shaped arenas (Moser et al., 2017; Krupic, Bauza, Bur-
ton, Barry, & O’Keefe, 2015). Place cells, on the other hand,
are known early on to respond to many spatial and nonspa-
tial cue changes (Wiener, Paul, & Eichenbaum, 1989; Moser
et al., 2017). In a recent study, both MEC grid cells and hip-
pocampal CA1 place cells’ fields were found to change dur-
ing presence of rewards (Boccara, Nardin, Stella, O’Neill, &
Csicsvari, 2019). With these observations, it is hypothesized
that MEC cells may instead provide local measures of dis-
tance and the distortions in fields may be beneficial for ani-
mals to perform tasks (Ginosar, Aljadeff, Las, Derdikman, &
Ulanovsky, 2023).

We extend and examine the latter hypothesis using a com-
putational framework to understand if the changes in spatial
receptive fields under presence of rewards can be beneficial
for animals to learn. In other words, could the animals be
changing their representation of the environment in order to
learn better? We used artificial place cells (radial basis func-
tions, RBFs) and neural data of MEC cells from (Boccara et
al., 2019) as features in a reinforcement learning framework
to understand the computational benefits of spatial receptive
field remapping.

Background and Methods
Boccara et al. (2019) found that cells in the MEC and CA1 re-
gion are attracted to goals. In the study, rats were trained to
learn three hidden reward locations on a cheeseboard maze
while recording from the MEC and CA1. Each trial consisted
of three phases: pre-learning, learning, and post-learning.
During pre-learning and post-learning, the spatial receptive
fields of neurons were recorded in absence of rewards. The
study observed that neurons have higher average firing rates
near reward locations (Figure 1). We represent the average
firing rates of all neurons at location s as ψ(s). The receptive
field pre-learning is denoted as ψpre while that of post-learning
is ψpos.
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(a) Pre-learning (ψpre)
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(b) Post-learning (ψpos)

Figure 1: An example MEC neuron’s receptive field before and
after the rat learns the reward locations. In the post-learning
map, the neuron activates more near the reward locations.
The animal also spends more time near reward areas post-
learning.

In this paper, we are interested in performing policy eval-
uation with these receptive fields as features. Consider an
environment with the set S of states and a reward function
R(s). The agent follows fixed policy π and seeks to find a
value function that measures the expected discounted sum of
future rewards starting from state s0:

vπ(s0) = E
[
R(s0)+ γR(s1)+ γ

2R(s2)+ · · ·
]

(1)

where 0 ≤ γ ≤ 1 is the discount factor. The agent estimates
the value function with Vπ(s;w) = ψ(s) ·w and tries to mini-
mize the value error:

V E(w)≡ ∑
s∈S

[vπ(s)−Vπ(s;w)]2 . (2)

The agent can learn w by sampling trajectories of π for T
steps and applying the Temporal Difference (TD) learning rule
(Sutton & Barto, 2018):

wn+1 = wn +η

T

∑
t=1

[R(st)+ γV (st+1)−V (st)]ψ(st). (3)

We also need to model the agent’s policy after the rat’s be-
haviors before and after learning. Observing that π(st+1|st) =



p(st+1|st) =
p(st+1,st )

p(st )
, we use the triweight kernel density es-

timator (Marron & Nolan, 1988) to derive the densities of
p(st+1,st) and p(st), separately. This allowed us to interpo-
late the data and obtain good estimates of πpre and πpos, the
simulated policies of the rat pre- and post-learning.

Furthermore, we are interested in finding how place cell fea-
tures move to allow fast TD learning. The cross-entropy (CE)
based basis adaptation evolutionary algorithm (Menache,
Mannor, & Shimkin, 2005) finds features (ψ) that would lower
convergence value error in TD learning. It does so by param-
eterizing ψ(·;θ) and iteratively find θs that perform better. In
this paper, θ represents the centers of RBFs. In each gen-
eration, different θs are sampled from a Gaussian distribution
θ ∼ N (µ,Σ) and the θs that have lowest convergence value
errors are used to update µ and Σ.

Results
First, we used the CE algorithm (Menache et al., 2005) to
see how RBF (place cell) centers would move to increase TD
learning speed (Figure 2). We can observe that the closest
place cell centers evolved closer to rewards (Figure 2a). Inter-
estingly, the place cells furthest away from the rewards moved
further away. We can also confirm that the RBF centers gather
near the rewards after the evolution process (Figure 2b). This
supports our hypothesis and matches the qualitative observa-
tion in (Boccara et al., 2019) that receptive fields would move
closer to rewards.
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Figure 2: Results from the CE algorithm. (a) Sorted place
cell center distance to closest reward location. Shaded area
denotes 95% confidence interval over 5 seeds. (b) Example
evolution of place cell centers before and after performing the
CE algorithm. The box represents the region where the artifi-
cial agent could move.

Next, inspired by recent theory of TD learning dynamics
(Bordelon, Masset, Kuo, & Pehlevan, 2023), we aimed to see
if using the MEC receptive fields from the post-learning phase
(ψpos) would allow a TD learner to learn faster (Figure 3). We
found that TD learners following πpos and using ψpos have
faster convergence and lower convergence value errors com-
pared to that of ψpre (Figure 3a). However, we do not see the
same phenomenon when the TD learners follow πpre (Figure
3b). This implies that the improvement in learning arises from
the joint alignment of the policy and the representations.
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(c) Student t-test on convergence value error drop proportions

Figure 3: (a, b) Representative learning curves of a TD
learner using pre-learning and post-learning receptive fields.
(a) Learning curves of TD learning evaluating a policy ob-
tained from post-learning rat behavior. (b) Learning curves
of TD learning evaluating a policy obtained from pre-learning
rat behavior. (c) Value error drop proportion on all 13 trials in
the data. The drop proportion is calculated by (V Econvergence−
V E initial)/V E initial . The V Econvergence is computed by averag-
ing the final 100,000 value errors across 10 seeds. **P< 0.01.

Discussion
In this study, we examined whether changes in receptive fields
during presence of rewards can be beneficial for animals to
learn. Our results support the hypothesis that animals change
their receptive fields to learn better.

One limitation of our work is that we only modeled policy
evaluation of the learning process. In the complete learning
process, the agent not only perform policy evaluation, but also
policy iteration. For a complete explanation of the rat’s behav-
ior, it would be necessary to model both parts of the learning
process.

Another limitation is the low number of features for learning.
Modern theory on TD learning (Bordelon et al., 2023) relies on
the assumption that features can fully express the target value
function. However, we have at most have 45 neurons per trial.
This can be solved with new high-throughput neural recording
techniques (Steinmetz et al., 2021).

We also recognize that not all cells in the MEC encodes a
spatial firing pattern that is tied to the location of the animal.
For example, head direction cells in the MEC fires maximally
when the animal is facing a certain direction in the environ-
ment (Tukker et al., 2022). There are also conjunctive cells
that have firing fields similar to a mixture of head and grid
cells (Sargolini et al., 2006).
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