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Abstract
Can diffusion models trained on a sample dataset ac-
quire abstract relational reasoning ability? To explore
this question, we train diffusion models on the RPM vi-
sual reasoning dataset. We find that diffusion models are
capable of generating novel samples conforming to re-
lational rules without directly memorizing training data.
Moreover, the models successfully generate samples that
conform to rules of similar structure unseen in training,
suggesting generalization in the abstract relation space.
Notably, the models exhibit ordered learning dynamics in
rule acquisition, with local data structure learned earlier
than global structure.
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Introduction
Humans excel at recognizing relations between objects and
generalizing abstract relations like ‘constant’ across various
contexts - for example, constant shape or size. A key goal in
machine learning is to give machines similar capabilities in re-
lational reasoning. Recently, diffusion models have shown im-
pressive ability to generate realistic images and capture com-
plex data distributions (Rombach, Blattmann, Lorenz, Esser,
& Ommer, 2022). Can these models also emulate human-like
generalization of abstract relations?

Characterizing generalization in diffusion models is com-
plex because the underlying data distribution they should cap-
ture is often unknown. Traditional evaluations of these mod-
els (e.g. FID) usually focus on image diversity and realism
(Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017).
However, an important application is to have the generated
images conform to specific relational rules. This study inves-
tigates whether diffusion models can learn and generalize the
abstract relations defining data distributions. We utilize the
Raven’s Progressive Matrices (RPM) task, a well-established
benchmark for measuring abstract reasoning skills (Raven,
1936). We train diffusion models on RPM images with vari-
ous relational rules and assess their ability to generate new
images that follow both trained and novel rules. Our findings
suggest that diffusion models can generalize abstract visual
relations, prompting further research into their reasoning ca-
pabilities in vision and beyond.

1† Equal contribution.

Approach

Figure 1: A) Example GenRAVEN dataset image and B) its
attribute-value array representation. The underlying rule is
constant shape. C) The 40 relational rules in the GenRAVEN
dataset. 5 rules are held-out during training.

GenRAVEN Dataset We introduce the GenRAVEN dataset,
comprising RPMs associated with 40 relational rules. Each
RPM features a 3×3 matrix where each row follows a unique
relational rule. Each rule is composed of an abstract relation
(constant; progression ±2, ±1; arithmetic ±; XOR; OR; AND)
applied to an attribute (shape, size, color, number, position).
The dataset encodes each RPM by an integer array of 3×9×
9, indicating attribute values for each position in the panels,
with -1 representing empty positions (Fig. 1B).

The dataset is designed so that the rule governing each row
remains ambiguous when examining only the first two panels
and only becomes evident when all three panels are consid-
ered. This design ensures that the rule governing the row can-
not be directly deduced from the first two panels alone and the
model must reason the entire matrix. We generate 4k random
images per rule for training. To study the generalization of
abstract relations such as constant to new attributes, we held
out 5 rules (Fig 1C) during training and evaluate the model’s
ability to generate images of these held-out rules.

Diffusion Model The Diffusion model has been the promi-
nent approach for generative image modeling (Dhariwal &
Nichol, 2021). Given the spatial nature of the task, we
treat each RPM as a 9x9 image with 3 attribute channels
and adapted existing diffusion methods for image generation.
Specifically, we experimented with two network architectures,
UNet (Karras, Aittala, Aila, & Laine, 2022) and Diffusion Trans-
former (DiT) (Peebles & Xie, 2023). We used deterministic
samplers to generate samples: Heun’s 2nd order sampler with



Figure 2: Diffusion model learns to capture abstract relations. A. Proportion of generated samples with consistent rules
applying to three rows or two rows (only). B. Proportion of generated rows and panels that are memorized (found in the
training dataset). C. Proportion of generated rows that conform to trained and held-out rules. The dashed line denotes the
expected frequency 1/40, if the model generates 40 rules uniformly. D. The fraction of generated samples that satisfy each
criterion throughout training, normalized by their maximum values, highlighting their different learning rate. E. Model comparison
regarding the validity of row and rule consistency across rows. DiT-B doubles the hidden size and attention head count of DiT-S.
EDM-x1,x2,x3: UNet with 1,2,3 times width and depth.

18 steps for UNet model (Karras et al., 2022); and DDIM sam-
pler with 100 steps for DiT (Song, Meng, & Ermon, 2020). We
rounded the generated value of each attribute to the closest
integer. Leveraging the in-painting capability of diffusion mod-
els (Lugmayr et al., 2022), we also challenged them with the
RPM tasks: given 8 existing panels, let the diffusion model fill
out the missing panel from noise.

For each row in a generated sample, we inferred the set
of applicable rules. When no rule applies, the row is called
invalid. We calculated the fraction of valid rows throughout
training. We also calculated the fraction where the same rule
applies to two or three rows in the sample, which we call the
two or three-row consistent fraction (C2, C3).

Results

Diffusion model learns abstract relations without memo-
rization Through diffusion training, the validity and rule con-
sistency of the generated samples both increased (Fig. 2A).
Using DiT-S/1 as our running example, after training, 55.1%
of the samples had consistent rules applying to three rows
(C3), and 73.9% of the rows are valid. This is substantially
higher than the chance level (0.03% for C3; 16.9% for valid
row) per uniform random sampling of attribute values. Impor-
tantly, among the 200k generated RPMs, no RPM or a sin-
gle row exists in the training dataset, which suggests that the
model has learned the underlying rules rather than memo-
rizing specific examples (Fig. 2B). Nevertheless, 32% of the
generated panels exist in the training set, showing that dif-
fusion models could memorize local patterns of the training
data, while creating novel rule-conforming combinations.

Further, the model extended to generate rows and samples
that align with untrained, held-out rules more frequently than
the chance would allow (Fig. 2C). This suggests its gener-
alization on the next level: namely, by observing rows with
”constant size” and ”constant shape”, it learned to generate
rows with ”constant color”, which provides evidence that the
model captured the abstract relation of ‘constant’. Interest-
ingly, the frequency of generating samples and rows following
held-out rules exhibited non-monotonic dynamics, where ini-

tially the model learned to generate both trained and held-out
rules similarly, however over time, the frequency of generating
held-out rules decreased while that for trained rules increased.
This suggests that early on the diffusion models tend to ”over-
generalize”, and later they learn to constrain the extent of gen-
eralization.

Hierarchy of learning dynamics across rule criteria To
conform to relational rules, the generated samples must sat-
isfy the following criteria: 1) Object-consistency: the at-
tribute values at each location must either fail within prede-
fined ranges or be marked by -1 if no object is present. 2)
First-two panel validity: the values of each attribute in the
first two panels must potentially comply with a rule. 3) row-
level rule validity: across all three panels in a row, one at-
tribute must satisfy a rule. 4) Cross-row consistency: The
rules applied to the three rows within a matrix must be the
same. Fig. 2D shows the fraction of generated samples that
meet each of these criteria at different training epochs. We
observe an order of learning, where the model initially learns
more local data structures and subsequently adapts to more
global ones.

Reasoning ability varies based on architecture. Regard-
ing model architectures, transformer-based backbone (DiT)
with object tokenization (DiT-S/1) achieved stronger rule con-
sistency than the UNet across scales (EDM-x1 to EDM-x3);
it also has better rule consistency than DiT with panel tok-
enization (DiT-S/3). This suggests the importance of object-
level self-attention for rule inference. Scaling up the depth and
width of UNet model improved performance, while scaling up
the width of DiT model did not. The full comparison of rule va-
lidity and consistency across network architecture and scale
is shown in Fig.2 E.

Diffusion models show RPM reasoning through impaint-
ing Finally, we tested the ability of diffusion models to com-
plete RAVEN tasks through inpainting. We created novel row
combinations for each rule and let the model fill-in the last
panel. The panel generated by the model (DiT-S/1) was rule



consistent at a rate of 28.7% and 8.2% for trained and held-
out rules, surpassing the chance level per random sampling
(2.2% and 3.5%). This performance highlights their ability to
generate according to the abstract relations inferred from ex-
isting context and generalize to novel rules.

Conclusion and Future Direction
We demonstrate that diffusion models can effectively learn
and generalize abstract relational rules, offering significant
insights into their capabilities in complex reasoning tasks.
The models not only accurately generate novel examples of
trained rule but also extend abstract relation to generate ex-
amples of unseen rules. Additionally, the hierarchical learn-
ing dynamics we identified mark an initial step towards under-
standing how these models generalize. Looking forward, we
aim to extend our findings to explore generalization behavior
in more realistic reasoning tasks, particularly those based on
pixel valued images rather than attribute values.

Acknowledgments

References
Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans

on image synthesis. Advances in neural information pro-
cessing systems, 34, 8780–8794.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., &
Hochreiter, S. (2017). Gans trained by a two time-scale
update rule converge to a local nash equilibrium. Advances
in neural information processing systems, 30.

Karras, T., Aittala, M., Aila, T., & Laine, S. (2022). Elucidat-
ing the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35,
26565–26577.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R.,
& Van Gool, L. (2022). Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition (pp.
11461–11471).

Peebles, W., & Xie, S. (2023). Scalable diffusion models with
transformers. In Proceedings of the ieee/cvf international
conference on computer vision (pp. 4195–4205).

Raven, J. C. (1936). Mental tests used in genetic, the perfor-
mance of related indiviuals on tests mainly educative and
mainly reproductive. MSC thesisUniv London.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer,
B. (2022). High-resolution image synthesis with latent dif-
fusion models. In Proceedings of the ieee/cvf conference
on computer vision and pattern recognition (pp. 10684–
10695).

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502.


