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Abstract
Biological vision is energetically costly. Visual attention
may save energy by selecting, on the basis of a cursory
initial analysis, the features and locations that deserve
scrutiny. Here we investigate this idea using recurrent
convolutional neural network models with graded atten-
tional selection, implemented as multiplicative gain on
features (what gain) and locations (where gain). The task
for both humans and models was to determine the class
(what) and location (where) of a handwritten digit among
letters. Humans viewed brief presentations of such clut-
tered images and also rated the difficulty of each search.
Models were trained with a loss encouraging high accu-
racy in both the what and the where task and low energy
use. We found that models with attention achieved the
best (Pareto-optimal) combinations of energy and accu-
racy. In contrast to models with no penalty on energy
use, models optimized with an intermediate energy cost
term consistently had a higher correlation across images
between model energy use and human difficulty judg-
ments. Finally, models that included feature-based atten-
tion (what gain) better explained human difficulty judg-
ments. Our work demonstrates the importance of re-
source costs for understanding the computational mech-
anisms of biological vision.
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Introduction
Biological visual systems are energetically costly (Wong-
Riley, 2010). Visual attention may save energy by steering
scrutiny to aspects of the image that matter given current task
demands and computational state. Here we evaluated this
idea using recurrent convolutional neural networks with adap-
tive multiplicative gain on feature maps (“what gain”), loca-
tions (“where gain”), both (“what & where gain”), or neither
(“no gain”). We trained these networks to maximize accuracy
on a digit detection task while minimizing energy use (defined
as the sum of activations in the convolutional layers). The net-
works had noise added to the activations of the convolutional
layers, creating a trade-off, where high signal relative to the
noise incurred high energy costs.

Related work. Spoerer et al. (2020) explain time and accu-
racy trade-offs in vision using recurrent convolutional neural
networks without an explicit attentional mechanism (top-down
gain modulation) as used here. They define energy cost as
the number of floating-point operations and do not optimize
networks for low energy. We use the sum of neural firing
rates across space and time (a biologically plausible notion
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Figure 1: Human behavioral task.

of energy usage) as a term in the cost function. Młynarski
and Tkačik (2022) show how feedback signals may adapt the
sensory code to use fewer spikes. However, their model is
limited to simple visual tasks where computing the full pos-
terior distribution is tractable. Konkle and Alvarez (2023) im-
plement a feature-based gain mechanism that captures a few
classic top-down neural signatures of category-based atten-
tion and increases AlexNet’s alignment with brain represen-
tations. Our work is complementary, focusing more on how
attention mechanisms may improve energy efficiency of bio-
logical vision.

conv1

what g
ain

where gain

what
prediction

where 
prediction

hidden 
state

gru

0 1 2 3 4 5 6 7 8 9

input
image

co
nv

3

conv2

+ ε1 ~ N(0, 1)

+ ε2 ~ N(0, 1)

+ ε3 ~ N(0, 1)

Figure 2: Model architecture.

Task
The task for humans and models was to detect an MNIST
(LeCun, 1998) handwritten digit among handwritten letters
sampled from Extended MNIST (Cohen et al., 2017) (Fig. 1).
For each of the 400 64x64 images, we uniformly sampled the
level of pixel-wise Gaussian noise (SD: 0-0.2) and the number
of distractors (1-8). Presentation times were sampled from
{100, 200, 300, 400}ms and each search image was accom-
panied by a backward masking image with similar statistics.
We asked subjects to report by mouse click (1) where the digit
was on a blank square, (2) what class it belonged to, and (3)
the difficulty level of that particular search on a continuous
scale “easy-medium-hard”. Each subject received 10 training
trials with feedback for what and where guesses, but there
was no feedback in the experiment. The task was performed
by 20 subjects on Prolific.

Model
All models are recurrent convolutional neural networks mak-
ing 4 passes on the static search image (Fig. 2). The base
no gain model consists of 3 convolutional layers followed by
a gated recurrent unit (GRU) layer that keeps a hidden state
across passes. On each pass, the digit class (“what predic-
tion”) and location (“where prediction”) is linearly read out from
the GRU output.



Multiplicative gain. Models compute gain maps linearly
from the hidden state of the GRU. The what gain model has
gain on features (channels), where gain model has gain on
spatial locations, and what & where gain model has both.
Gain maps are broadcast and multiplied element-wise with
pre-activations in convolutional layers. A feature is attended,
thus, to the extent that it has significant what and where gain.
Suppression of half the feature maps and half the locations
would reduce the attended features to one fourth.

Energy use. Motivated by the idea that a neural spike re-
quires a quantum of energy, we interpreted activations of our
rate-coded models as neural firing rates and defined the en-
ergy loss Lenergy on a perceptual trial as the sum of all convolu-
tional activations across the 4 passes. We prevented the mod-
els from scaling activations down arbitrarily to save energy by
adding standard normal noise (after applying gain). The mod-
els are thus required to use substantial activations (signal rel-
ative to noise) to transmit significant information, while being
optimized to use energy efficiently. The final loss encourages
high accuracy in both the what and the where task and low
energy use: L = Lwhat +Lwhere +λenergy ×Lenergy. We used
12 different weights for the energy term λenergy ∈ [0.0,0.3] and
trained 10 instances for each model-and-energy-weight com-
bination.

Results
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Figure 3: Human behavioral results (N=20). Shaded areas and error
bars represent standard error of the mean.

Human behavioral results (Fig. 3). Accuracy in both what
and where tasks increased with presentation time, and de-
creased with the number of distractors and noise level. Diffi-
culty judgments showed the opposite pattern.

Model accuracy (Fig. 4A). When λenergy = 0, models with
gain have a higher accuracy in both what and where tasks. So
attention is beneficial even without a constraint on energy.

Model accuracy-energy trade-off (Fig. 4B). Models with
attention achieve Pareto-optimal combinations of what accu-
racy, where accuracy and energy use.

Model-human correlations (Fig. 5). We computed image-
level Spearman rank correlations between model and human
errors on what and where tasks, as well as model energy
use and human difficulty judgements as a function of energy
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Figure 4: Model results. A. Error bars represent standard error and
colored horizontal lines indicate significant differences between the
models. B. Lines and shaded areas represent predictions (mean
and SD) from a fitted Gaussian process.
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Figure 5: Model-human correlations. We computed Spearman rank
correlations across 400 images between model and human what and
where errors, as well as between model energy use and human diffi-
culty ratings. Shaded area and error bars represent 95% confidence
intervals bootstrapped across subjects and model instances.

weight λenergy (Fig. 5A). We then selected λenergy values that
resulted in most human-aligned models (indicated by a star)
and ran paired bootstrap difference tests with Bonferroni cor-
rection for multiple comparisons (Fig. 5B). We found no sta-
tistically significant differences in human what or where error
prediction between the attentional and non-attentional models
trained with maximally human-aligned λenergy. However, we
found that non-zero weight on the energy cost λenergy > 0.0
helps all models better explain human difficulty judgments
(Fig. 5A, bottom). Moreover, models that included feature-
based attention (what gain and what & where gain) had a sig-
nificantly higher correlation between energy use and human
difficulty judgements than no gain model (Fig. 5B, bottom).

Conclusion
We show how energy costs can be optimized along with task
performance in neural network models of biological vision and
demonstrate that attentional mechanisms can boost perfor-
mance, save energy, and help explain human behavior and
task difficulty judgments.
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