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Abstract
Intrusive memories of traumatic events differ in their con-
tent and their quality (i.e., representational format) from
voluntary memories. We investigated these represen-
tational formats in 22 participants using a trauma film
paradigm with a subsequent resting period to collect
memory intrusions during functional magnetic resonance
imaging (fMRI). We employed a convolutional neural net-
work (DNN) re-trained to identify emotions, and large lan-
guage model to quantify visual and semantic format. Us-
ing representational similarity analysis on DNN features
we observed higher similarities between trauma than be-
tween neutral clips in both the visual and the semantic
model, indicating generalization across content. How-
ever, on a neural level, encoding of trauma-analog clips
revealed more pronounced visual formats. Our next steps
will be to employ the semantic model and to analyze the
resting period containing memory intrusions.
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Introduction
Memory traces consist of multiple representational formats
which can be dynamically transformed from a visual format
to a more abstract, semantic format (Xue, 2022). This trans-
formation can be influenced by complex factors such as the
valence of a stimulus which can improve later memory in
case of negative stimuli (Kensinger, Garoff-Eaton, & Schac-
ter, 2007). By contrast, extremely negative emotional content
may also lead to detrimental effects on memory such as in-
voluntary retrieval in the form of intrusions, with current the-
ories suggesting a disrupted integration of visual content into
long-term memory (Clark, Holmes, Woolrich, & Mackay, 2016;
Brewin, 2014). Convolutional deep neural networks (cDNNs)
and large language models (LLMs) have been shown to re-
flect visual and semantic formats, respectively, during neutral
stimulus processing (Heinen, Bierbrauer, Wolf, & Axmacher,
2023), and recent studies demonstrated their applicability to
complex emotional stimuli (Kragel, Reddan, LaBar, & Wager,
2019; Horikawa, Cowen, Keltner, & Kamitani, 2020). To shed
light on the representational formats of traumatic memories
we thus combined our data from a previous study (Kobelt
et al., 2024) with deep neural network approaches. Here,
we present preliminary results on the representational format
of trauma-analog stimuli during encoding. Our next analysis
steps are described in the outlook section.

Methods
The study was approved by the ethical committee of the Fac-
ulty of Psychology at Ruhr University Bochum, Germany. We
tested 22 (all female) participants (age M = 24.5, SD = 3.9)
using 3 Tesla fMRI (Philips Achieva, Philips Healthcare, Best,
Netherlands; TR = 2.5 sec., 2 mm isotropic). We presented
21 trauma-analog and 21 matched control clips. In a subse-
quent resting period of 12 minutes participants indicated via

button press when they experienced an intrusion and reported
its content. DNN similarities were extracted from video frames
using a cDNN pre-trained on ImageNet (emo-cDNN; imple-
mented as in Kragel et al. (2019)) which we fine-tuned to iden-
tify 27 different emotions (Cowen & Keltner, 2017). Semantic
similarities were extracted using a LLM (Cer et al., 2018) on
the image labels provided by 7 independent raters. Using rep-
resentational similarity analysis (RSA; Kriegeskorte, Mur, and
Bandettini (2008)) we computed video-by-video similarity ma-
trices for the network models and correlated them with neural
similarity matrices in a whole-brain searchlight, separate for
trauma and for control clips. All t-statistics are adjusted for
multiple comparisons using Bonferroni, fMRI results are cor-
rected using FDR.

Results
More negative emotions in trauma clips
We first tested the performance of the emo-cDNN on our video
clips, revealing a significant difference in predictions for neg-
ative and positive emotions (F(1,40) = 4.67, p = 0.04; Figure
1B) as well as between video types (F(1,40) = 5.34, p = 0.03).
Specifically, we find an interaction of video type and valence
indicating more negative compared to positive emotions for
trauma-analog (p = 0.02) but not for control clips (F(1,40) =
5.33, p = 0.03). Analyzing the similarity of trauma-analog clips
to each other (trauma within - control within) emo-cDNN fea-
tures revealed a significantly higher similarity among trauma
clips. This effect was found across almost all layers of the
network (conv1-5: all p<0.001, fc7: p = 0.004; Figure 1C),
except for the first and last fully connected layer, suggesting
more similar visual features among trauma clips than among
control clips.

More pronounced visual format for trauma-analog
clips
On a neural level, emo-cDNN similarities reveal a difference
between trauma-analog and control clips: convolutional lay-
ers (conv1,conv5) indicate a more pronounced visual format
for trauma-analog clips in areas such as the precuneus, the
postcentral and the angular gyrus (Figure 1D) but no differ-
ence for fully-connected layers. In contrast, fully connected
(fc6-8) but not convolutional layers show a better similarity fit
for regions such as the medial and lateral occipital cortex, and
the lingual gyrus suggesting an altered visual processing of
trauma-analog content while control clips are processed along
the normal hierarchy along the ventral visual pathway (VVS).

Generalization of semantic formats of trauma clips
We next investigated the semantic content of trauma-analog
and control clips using word embeddings from descriptions of
the videos from 7 independent raters. We find that the se-
mantic format of trauma clips is highly similar (within vs be-
tween: t(40) = 18.59, p<0.001; Figure 1F) while at the same
time it is distinct from control clips (trauma vs control: t(40)

= 16.75, p<0.001). Although trauma clips share more com-
mon semantic content than controls, we find that semantic



Figure 1: A) Prediction accuracy of the emo-cDNN on video frames of a trauma-analog (amputation) and a control (massage)
video. Right bars: Top five predicted emotions (purple: negative, green: positive). B) More negative than positive emotion ratings
in trauma-analog videos. No difference in control clips. C) Trauma-analog clips are more similar to each other (trauma-trauma
similarity - control-control similarity) across almost all emo-cDNN layers. D) Better emo-cDNN to neural fit for trauma-analog clips
in convolutional layers (conv1, purple) compared to a better fit for fully-connected layers for controls (fc8, green). E) We extracted
semantic similarities from rater descriptions and computed a video by video similarity matrix. F) Higher semantic similarity within
trauma videos compared to the similarity within control and between trauma and control. G) Higher similarity to the semantic
content of the matched control clip compared to other control clips. Searchlight results are reported with p<0.05, FDR-corrected
for multiple comparisons

content between trauma clips and their matched controls sig-
nificantly differs from the content of other controls (t(40) = 8.77,
p<0.001; Figure 1G). These results suggest higher general-
ization of trauma clips based on shared semantic features,
which is not found for control clips. Thus, the trauma-analog
content used in this study seems to share both visual and se-
mantic features.

Outlook
First, we will analyze the whole-brain searchlight using the
semantic model to test whether semantic processing is al-

tered for trauma-analog content, compared to the stronger in-
volvement of visual format for these clips. In a next step, we
will further investigate the link between semantic formats and
neural data using topic modeling and Hidden Markov Models
(Heusser, Fitzpatrick, & Manning, 2021; Lee & Chen, 2022;
Perl et al., 2023) on the trauma clip descriptions but also
the intrusion reports to understand the underlying representa-
tional geometry. Finally, we will test whether visual or seman-
tic formats can be linked to the neural data during intrusions
from the resting period.
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