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Abstract
Neural representations derived from fMRI responses to
natural sounds within non-primary auditory cortical re-
gions mirror those found in the intermediate layers of
deep neural networks (DNNs) trained for sound recog-
nition. However, the underlying characteristics of these
representations remain elusive. In this study, we inves-
tigate the nature of these intermediate representations
employing a disentangling invertible flow model. We
recorded a novel dataset of natural sounds, designed
to probe the hypothesis that sound-to-event DNNs en-
code distinct basic sound generation mechanisms (hu-
man actions) and source properties (object materials) in-
dependently within their intermediate layers. To simu-
late brain responses to these natural sounds, we utilized
the layer-by-layer activation of a convolutional DNN (Yam-
net), pre-trained to categorize sound spectrograms into
semantic categories. Crucially, through systematic ma-
nipulations of the obtained latent representations using
the disentangling invertible flow model, we demonstrate
predictable effects in the DNN’s output. This in silico
demonstration offers a promising avenue for subsequent
neuroscientific in vivo experimentation. Code available at
https://github.com/TimHenry1995/LatentAudio.
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Introduction
How does the human brain recognize objects and events from
sounds? Neuroscience research suggests that non-primary
auditory regions in the Superior Temporal Gyrus (STG) play
a pivotal role in transforming acoustic representations of natu-
ral sounds into semantic representations (Hjortkjær, Kassuba,
Madsen, Skov, & Siebner, 2018; Norman-Haignere & McDer-
mott, 2018). Intriguingly, recent studies have revealed that
functional magnetic resonance imaging (fMRI) responses to
natural sounds in these regions are better explained by con-
volutional Deep Neural Networks (DNNs) trained to recognize
natural sounds than by various other acoustic and seman-
tic models (Kell, Yamins, Shook, Norman-Haignere, & Mc-

Dermott, 2018; Giordano, Esposito, Valente, & Formisano,
2023). Crucially, latent representations in intermediate lay-
ers of the examined DNNs (e.g., VGGish, Yamnet; (Hershey
et al., 2017)) most closely resemble those derived from fMRI
responses, suggesting that STG regions may involve an inter-
mediate acoustic-semantic representation facilitating sound
recognition. However, the specific characteristics of this rep-
resentation remain elusive, and the extent to which it is nec-
essary for subsequent sound recognition has yet to be deter-
mined. While inspecting and manipulating intermediate rep-
resentations within the human brain is challenging, the la-
tent spaces of artificial neural networks can be disentangled
and modified using invertible flow models (Esser, Rombach,
& Ommer, 2020; Toledo & Antonelo, 2021; Tomar & Ra-
jagopalan, 2022; Higgins et al., 2016). In this study, this ap-
proach is used to explore the nature of said representations
using a controlled set of sounds related to human actions and
object materials. Additionally, the causal relationship between
intermediate and semantic representations is investigated in
silico by analyzing the impact of systematic manipulations of
the latent representations on the DNN output.

Methods
Data Collection
The Material and Action Sound (MaAs) data set introduced
here consists of 60,000 1-second long sounds recorded from
objects made of wood, metal, glass, stone, cardboard and
plastic that interacted by means of tapping, rubbing, destruc-
ting and whirling. MaAS distinguishes itself from related data
sets (Zhang et al., 2017; Guo, Jiang, & Gao, 2022; Soomro,
Zamir, & Shah, 2012; Jung & Chi, 2020; Huh, Chalk, Kazakos,
Damen, & Zisserman, 2023) due to its complete factorized de-
sign that is needed to disentangle Yamnet’s latent space.

Latent Space Exploration and Disentanglement
Materials and actions were decoded from each of Yamnet’s
14 layers using 10-fold cross-validated K-Nearest Neighbor
(KNN) (Fix & Hodges, 1989; Cover & Hart, 1967) classifica-
tion. Furthermore, an invertible flow model Esser et al. (2020)
was calibrated to disentangle the latent space. This model is

https://github.com/TimHenry1995/LatentAudio
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Figure 1: Latent Space Disentanglement: Each dot is one MaAS sound, represented by the first two dimensions of the
disentangled latent space. Left and right panels show the same dots, except for coloring. Material abbreviations: W (wood), M
(metal), G (glass), C (cardboard). Action abbreviations: T (tapping), W (whirling).

a composition of invertible non-linear transformations whose
output is supervised to encode material variation only along
one dimension, action variation only along a second dimen-
sion and all residual variation only along the remaining di-
mensions. The output is incentivised to be a multivariate nor-
mal distribution with clusters along the material dimension for
sounds of same material and clusters along the action dimen-
sion for sounds of same action.

Latent Space Manipulation

Due to the invertibility of the calibrated flow model, it was pos-
sible to map perturbations in the disentangled latent space
back onto the original latent space and continue Yamnet’s
downstream processing. In particular, sounds whose value
on the material dimension of the disentangled latent space
was atypical (i.e. away from their own material’s cluster mean)
were made more similar to their own material or another ma-
terial by perturbing said value. Yamnet’s tendency to assign
semantic classes typical with either material to the perturbed
sound were then measured in Yamnet’s final layer. Analogous
steps were taken for changes along the action dimension.

Results

Latent Space Exploration and Disentanglement

The decoding of material and action classes by means of KNN
was found to be most accurate for intermediate layer 9. This
superiority was statistically significant when compared to lay-
ers 1 and 14 (p < 0.01,t-test, Bonferroni corrected) The dis-
entanglement of materials and actions is shown in Figure 1 for
the respective four and two most separable classes.

Figure 2: Latent Transfer: Effect of transferring an atypical
(⌣) sound to a typical (⌢) one of the same (P) or different
(Q) material. ∗ = significant at Bonferroni corrected α = 5%.

Latent Space Manipulation

As shown in Figure 2 (top), making an atypical sound
⌣
P

more similar to a typical sound
⌢
P of same material in the la-

tent space reduces their distance in Yamnet’s semantic space

(middle vs. left bar). Yet, making
⌣
P more similar to a typical

sound of another material
⌢
Q makes it diverge from

⌢
P in the

semantic space (right vs. left bar). Importantly, the effect is



reversed when the distances are measured with respect to
⌢
Q

(bottom half of Figure 2) such that moving
⌣
P to

⌢
Q in the la-

tent space makes the atypical
⌣
P sound more typical for the

semantic classes of
⌢
Q (right vs. left bar). The same obser-

vations hold for action perturbations (not shown here). These
comparisons are statistically significant at α = 0.05.

Conclusions
Our analyses indicate that semantic supervision fosters the
emergence of independent material and action representa-
tions in sound-to-event DNNs, thereby mirroring empirical
(fMRI) findings in human auditory cortex Hjortkjær et al.
(2018). Finally, our in silico manipulation of the latent space
suggests a causal link between these representations and
higher level semantics in silico and may constitute an impor-
tant step to understanding sound event recognition in in vivo.
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