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Abstract
Humans need to make accurate and timely decisions
based on a constant influx of noisy sensory signals from
common and separate causes. Current Bayesian Causal
Inference (BCI) models have shed light on how the brain
arbitrates between sensory integration and segregation
when uncertain about the signals’ causal structure. Yet,
these static models made predictions only for response
choices and ignored the dynamic nature of perceptual
decision making. Using psychophysics, we show that
crossmodal biases (CMB) decline for longer response
times. We then develop a dynamic Bayesian causal in-
ference (BCI) model that accumulates evidence jointly
about an event’s location and the signals’ causal struc-
ture over time until a heuristic decisional threshold is
reached. This dynamic BCI model accounts for the de-
cline in crossmodal influences over time by the progres-
sive resolution of spatial and causal uncertainty.
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Introduction
In our natural environment observers need to make accurate
and timely decisions based on a constant influx of noisy sig-
nals. A wealth of work in unisensory perception has shown
that observers accumulate multiple sensory samples until a
decisional threshold is reached consistent with normative se-
quential sampling models (Gold & Shadlen, 2007). Further,
observers have been shown to integrate sensory signals from
common causes weighted by their momentary reliabilities and
accumulate this integrated evidence over time (Drugowitsch,
DeAngelis, Klier, Angelaki, & Pouget, 2014). However, in nat-
ural situations observers do not a priori know whether signals
come from common sources and should hence be integrated.
They need to infer the signals’ causal structure from noisy
cross-sensory correspondence cues such as signals happen-
ing at the same time or location (Noppeney, 2021). In the
face of this causal uncertainty observers need to concurrently
accumulate evidence about environmental properties such as
an object’s location and the signals’ causal structure leading
to complex non-linearities in the decision process.

This study combines psychophysics in human observers
and Bayesian modelling to investigate how the brain accumu-
lates evidence about an event’s location from auditory and vi-
sual senses under causal uncertainty into timely and accurate
perceptual decisions.

Methods
Experimental procedure
In a spatial ventriloquist paradigm 15 observers were pre-
sented with synchronous, spatially congruent and disparate
audiovisual signals. On each trial, auditory (A) and visual (V)
locations were independently sampled from 8 equally spaced
locations, ranging from −21◦ to 21◦ along the azimuth. In sep-
arate blocks observers reported either their perceived A or V

location by pressing one of 8 buttons under speed or accuracy
instructions.

Generative model
The generative model (figure 1A) assumes that common and
independent cause cases (C=1 or C=2) are sampled from
a binomial distribution as defined by a causal prior pcommon
(Körding et al., 2007). A and V stimulus locations (sA,sV )
are sampled jointly (C=1) or independently (C=2) from a spa-
tial prior distribution N(µp,σp). On each trial, these stimulus
locations generate a series of independent noisy sensory ob-
servations (xA≤t ,xV≤t).

Recognition model
Given a series of noisy observations (xAt ,xVt ), the observer
is assumed to compute the posterior distribution over the
causal structure C and the A location (similarly for V location):
P(sA,C|xA≤t ,xV≤t) =

P(xAt ,xVt |sA,C)P(sA,C|xA≤t−1,xV≤t−1)

∑
C

∫
P(xAt ,xVt |sA,C)P(sA,C|xA≤t−1,xV≤t−1)dsA

for t = 1:
P(sA|C,xA≤t−1,xV≤t−1) = P(sA|C) (i.e. spatial prior)
P(C|xA≤t−1,xV≤t−1) = P(C = 1) (i.e. causal prior).

We obtain the posterior probability over A (or V) location by
marginalizing over the unknown causal structure C:

P(sA|xA≤t ,xV≤t) = P(sA,C = 1|xA≤t ,xV≤t) + P(sA,C =
2|xA≤t ,xV≤t)

When the observer responds, they read out the final A or V
location estimate (ŝA or ŝV ) as either the mean or the MAP
of the evolving posterior distribution (figure 1B). The contin-
uous location read outs are mapped onto the closest button
responses for comparison with observers’ discrete response
data. In addition, we explored the mapping from the model’s
discrete time sample to observers’ response times by ma-
nipulating the sample duration (2500 ms, 625 ms, 312.5 ms,
156.25 ms, 78.125 ms).
At each time point, the observer decides whether to
stop/respond or continue sampling based on this evolving
posterior distribution. We assessed the following stopping
criteria for the MAP estimate, and criteria iii and iv for the
mean estimate: i) P(sA = ŝA|xA≤t ,xV≤t) > crit, ii) P(sA =
ŝA|xA≤t ,xV≤t)− P(sA = ŝA|xA≤t−1,xV≤t−1) ≤ crit, iii) nor-
malized Shannon entropy EN ≥ crit (Li & Ma, 2020), iv)
EN(t)−EN(t −1)≤ crit.

We fitted the 6 (stopping criterion & read out) x 5 (sam-
ple duration) models to individual’s joint response time (RT,
64 time bins of 39.0625 ms duration) x choice (8 buttons)
histograms, by minimising the negative log likelihood of the
model responses given the data. At the random effects (i.e.
group level), we obtain the best model with respect to: i. sam-
ple duration and ii. stopping criterion & read out, using facto-
rial model comparison (Acerbi, Dokka, Angelaki, & Ma, 2018).

Results
Behaviour
The crossmodal bias (CMB) (e.g. for A report:
(AreportsA=x,sV=y − AreportsA=sV=y)) quantifies the in-
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Figure 1: (A.) The generative dynamic Bayesian Causal Inference model. (B.) Evolving posterior distributions for a simulated
trial with sA = 9 and sV = −9. Based on a series of noisy observations, xAt and xVt the posteriors, and the MAP and mean
estimates evolve over time.

fluence of V location on observers’ perceived sound location.
Consistent with BCI the crossmodal bias initially increases,
but then decreases again for greater spatial disparities. This
makes common causes for A and V signals progressively
unlikely. Importantly, the non-linear CMB function depends on
observers’ RTs. On fast trials (RTs within 1st tercile for each
participant), the CMB profile is more similar to sensory fusion
with overall greater CMB and less CMB decline for larger
spatial disparities (figure 2).

Figure 2: Crossmodal biases for observers’ responses
(across participants’ terciles mean +/- 95% CI) and model
simulation (stopping criterium EN(t)−EN(t −1) and readout
MAP). The data is split into terciles based on the response
times.

Modelling
Qualitative: The dynamic BCI model accounts for observers’
CMB profile across RT and disparity by spatial uncertainty
principles. Initially, the model faces large spatial and hence
causal uncertainty, so that the spatial estimate resembles a
vision-dominated fusion estimate. With increasing number of

samples this spatial uncertainty gradually resolves resulting in
less crossmodal influences (figure 1B).
Quantitative: Factorial model comparison at the group level
reveals superior performance of models that map samples
to a duration of 0.3125 ms (protected exceedance probabil-
ity Pexp = 0.636). Models with heuristic stopping criteria of
EN(t)−EN(t −1) ≤ crit and a MAP estimate account better
for observers’ response profile (Pexp = 0.304). However, there
was considerable inter-observer variability with respect to the
sample duration, the stopping criteria and read outs, which will
be explored in further communication.

Discussion

Previous static Bayesian Causal Inference models explained
how the brain arbitrates between sensory integration and seg-
regation depending on the world’s causal structure (Körding
et al., 2007). However, they ignored the dynamics of percep-
tual decision making allowing predictions only for response
choices but not for response times. This dynamic Bayesian
causal inference model sheds light on why observers’ re-
sponse choices and crossmodal biases depend on their re-
sponse times. Evidence accumulation progressively resolves
observers’ spatial uncertainty about the A and V locations,
and thereby their uncertainty about the signals’ causal struc-
ture. This decline in causal uncertainty in turn reduces
the influence of task-irrelevant spatially disparate inputs from
other sensory modalities. Moreover, this same computational
mechanism can also explain recent neuroimaging findings
suggesting a putative progression from earlier sensory fusion
estimates in posterior parietal cortices to Bayesian Causal in-
ference estimates in anterior parietal cortices (Aller & Nop-
peney, 2019; Rohe, Ehlis, & Noppeney, 2019; Cao, Summer-
field, Park, Giordano, & Kayser, 2019). Future research will
explore the considerable inter-observer variability in heuristic
stopping criteria.
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