‘Reusers’ and ’Unlearners’ display distinct effects of forgetting on reversal
learning in mice and artificial neuronal networks
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Abstract

Previous research has indicated that prior learning can be
both advantageous or disadvantageous for learning re-
lated tasks. Moreover, the speed of learning a related task
might be mediated by the extent of forgetting of the origi-
nal task. Here, we seek to explore the role of forgetting
initially learned task representations on reversal learn-
ing behavior in both mice and artificial recurrent neural
networks. We trained mice to discriminate two auditory
stimuli in a go/no-go paradigm. After learning, they had
a pause of 2 or 16-days. In general, a shorter pause re-
sulted in better memory retention and faster adaptation
during reversal learning with reversed conditions. How-
ever, some animals did not benefit from initial learning,
suggesting no reuse of initial representations. Similar
patterns were observed in artificial neural networks dur-
ing reversal learning, showing both beneficial reusing
and disadvantageous unlearning of previously learned
network configurations. Our findings shed light on the
use of initial representations during reversal learning and
could provide insights into cognitive flexibility in both bi-
ological and artificial neural networks.
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Introduction

Neural networks need to continuously adapt their representa-
tions to survive in a constantly changing environment. This
flexible adaptation of entrained representations can be medi-
ated by unlearning and forgetting (Guskjolen & Cembrowski,
2023). One possible factor for passive forgetting could be the
spontaneous remodeling of neuronal circuitry (Davis & Zhong,
2017). In this study, we examine how forgetting impacts per-
formance in a reversal learning task, in which we trained ani-
mals to perform a go/no-go discrimination paradigm and then
invert the initial reward contingencies. Acknowledging that
previous studies have presented conflicting views on the ef-
fects of forgetting during such learning schemes, we hypothe-
size two potential scenarios (Fig. 1).

Hypothesis | ('Reusing’): Reusing memory from a previ-
ously learned task could be beneficial for the reversal task,
because parts of the structure of the initially learned task could
be reused (Gonzalez, Behrend, & Bitterman, 1967; Wood-
worth & Thorndike, 1901; Day & Goldstone, 2012; Bransford
& Schwartz, 1999). In this case higher forgetting of the initial
task would lead to slower learning of the reversal task.

Hypothesis Il ('Unlearning’): Reusing previously learned
representations could have no advantage for reversal learn-
ing, because representations of the new task could inter-
fere with previously learned associations (Bouton, Nelson, &
Rosas, 1999; Luchins, 1942; Wixted, 2004; Postman, 1971).
In this case higher forgetting of the initial task could even ac-
celerate learning of the reversal task.
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Figure 1: lllustration of potential scenarios Hypothesis I:
Initial learning speeds up the reversal learning process. In this
case forgetting impairs reversal learning as it prohibits reusing
previously learned structures. Hypothesis Il: Initial learning
slows down the reversal learning process. In this case for-
getting aids reversal learning as it prevents interference with
previously learned structures and supports unlearning.

Methods

Experimental Design We trained mice in an operant learn-
ing task to discriminate two auditory stimuli in a go/no-go
paradigm. 16 wildtype C57BL/6J mice were trained on a
go/no-go discrimination task with two pulsed auditory cues.
After an initial learning period of three weeks, mice were sep-
arated pseudorandomly into two equally-sized groups that had
a passive pause interval of either 2 or 16 days. After the
pause, we probed memory retention by testing the perfor-
mance of the mice on the initial task, followed by a reversal
learning task with inverted contingencies for both stimuli.

Model specifications We employed a single-layer recurrent
neural network (RNN) with 2-dimensional input over t = 40
time points to perform a binary classification, equivalent to the
previously described experiment. The RNN consists of n =
50 hidden units with a non-linear activation function (hyper-
bolic tangent). The network was trained with backpropaga-
tion through time (stochastic gradient descent, learning rate
= 0.01) (Werbos, 1990) and a dropout rate d = 0.3. Mean
squared error (MSE) was used as loss function. The recur-
rent weights W were initialized with random normal distribu-
tion with specified mean (between 0 and -0.6) and standard
deviation (between 0.1 and 0.9), which have been kept con-
strained throughout training. Forgetting is implemented by
randomly shuffling a fraction of W after initial learning.

To distinguish 'Reusers’ from 'Unlearners’ in the RNN we fit-
ted sigmoidal curves to the reversal learning curves and com-
puted rank correlations between the delay in learning and the
proportion of shuffled weights. We expected 'Reusers’ to have
a positive correlation (Hypothesis 1) and ‘Unlearners’ to have
a small or negative correlation (Hypothesis Il) (Fig. 1).

To illustrate the difference between representations dur-
ing reversal learning we computed 'Weight Change Norm’
(WC) and 'Representation Alignment’ (RA) in the RNN (Liu
et al.,, 2023). WC is computed by: || AW [|:=|| W) —w () ||,



where W) (resp. W (") are the recurrent weights after initial
(resp. reversal) training. RA is computed by: RA(R(’),R@) =

Tr(R") RW)

IR[IRW

ilarity matrix after initial (resp. reversal) training.

, Where R (resp. R(’)) is the representational sim-
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Figure 2: Forgetting depends on pause and has impact
on reversal learning in mice A) Forgetting in memory test
is higher after longer pause between learning and testing B)
Forgetting has different impact on mice after a pause of 2 days
resp. 16 days C) Learning time of reversal task is positively
correlated with forgetting.

Mice display different performances in reversal
learning after pause

When mice underwent reversal learning after a pause of ei-
ther 2 days or 16 days from the initial learning the length of the
pause was positively associated with the error rate in a mem-
ory test (Fig. 2). Therefore a longer pause after initial training
seemed to lead to higher forgetting of the original task. More-
over, forgetting was positively correlated with reversal learn-
ing time, showing a pronounced delay during learning of the
reversed contingency task with more forgetting. However, not
all animals did show an advantage of learning the initial task
when comparing learning dynamics between initial and rever-
sal tasks.

Reversal learning performance depends on initially
learned network configuration and level of
forgetting

In the experiment we observed both positive and negative ef-
fects of initial learning on the performance during the reversal
task at an individual level. When learning curves were av-
eraged over multiple animals a delay in reversal learning was
visible for a longer pause between initial and reversal learning.
RNNs captured this behavior (Fig. 4). Interestingly, the effect
of forgetting on reversal learning depended on different initially
learned configurations. The majority of trained RNNs were
‘Reusers’, which profited from initial learning of the opposite
task. However, a subset of networks were *Unlearners’, which
were not capable of using previously learned representations
to speed up the reversal learning process (Fig. 3). 'Reusers’
showed higher influence of forgetting on the representational
alignment of their neuronal activity and weight changes within
the recurrent layer after reversal learning. This indicated a

A Reusers B c Representation Alignment
- and Weight Change Norm
B = \ " P 4
El= |2 go02 g oo w
G |=—o ‘E S o
£ Ty » 510 g0y &-25
= poch 1 : £ E
D |—os Unlearners : 5 l il 2
2z . : 500 + osoli
[ P, u - ]
5= a g, \ 0 III‘J.' o @ & &
g = -1 0 1 &5 S &
o= [ & & & g

Epoch Rank Corr. & &

Figure 3: Reversal Learning performance depends on indi-
vidual network configurations after initial learning A) Ex-
amples of networks with high and low rank correlation be-
tween forgetting and learning delay. B) Histogram of rank
correlations (We distinguish between 'Reusers’ with a rank
correlation > 0.5 and ’Unlearners’ with a rank correlation <
0.5.) C) 'Reusers’ show higher differences between 0% and
100% shuffling of weights during reversal learning, suggesting
a higher impact of forgetting on the capability to reuse initially
learned representations.
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Figure 4: Reversal learning performance depends on level
of forgetting. A) Average reversal learning curve for a cohort
of mice tested after 16 days displays slower reversal learn-
ing than a cohort tested after 2 days. B) Reversal learning
curves in the network model after shuffling different fractions
of synaptic weights display slower reversal learning for higher
forgetting.

profitable network configuration for switching stimulus contin-
gencies in contrast to 'Unlearners’.

Discussion

In conclusion, our study sheds light on the interplay of pas-
sive forgetting, neural representations and reversal learning:
Delayed reversal learning observed in experimental data av-
eraged over multiple animals can be successfully simulated
by a constrained RNN with shuffled synaptic weights mimick-
ing passive forgetting. However, we found evidence for both
beneficial and disadvantageous forgetting depending on indi-
vidual network configurations after initial learning. In future re-
search we aim to characterize these individual differences in
animals and RNNs and plan to acquire imaging data in mice
to compare neural representation changes in-vivo. Overall,
our findings provide valuable insights into memory dynamics
and may have implications for understanding cognitive flexibil-
ity and adaptation in both biological and artificial neural sys-
tems on a network level.
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