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Abstract: 

Despite the complex relational structure of human social 
networks, people adeptly navigate their communities. 
Recent work suggests people accomplish this by 
building predictive cognitive maps of others’ social 
relations, but little is known about how the brain encodes 
these representations. Here, we interrogate two 
representational formats differing in their assumptions 
about how information flows through large human 
networks: sequential transmission vs simultaneous 
propagation. Evidence from a real-world social network 
reveals that people’s cognitive maps of social ties are 
built to track simultaneous propagation of information, 
and that the anterior hippocampus encodes these 
predictive representations to support social navigation. 
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Introduction 
To flourish, human beings must learn to navigate 
complex social environments in order to access the rich 
resources embedded in networks (Bourdieu, 1986). 
Thus, people’s ability to successfully navigate social 
networks depends on their ability to construct an 
accurate mental representation of the social relations 
comprising the network. Past work suggests that 
predictive maps of transition probabilities between 
members of a social network might be a plausible 
format of representation akin to sequential spatial 
navigation (Successor Representation SR: Gershman, 
2018; Momennejad et al., 2017; Son, Bhandari, et al., 
2023; Son, Vives, et al., 2023; Stachenfeld et al., 2017). 
However, these representations appear ill-suited to 
capture information flow which might propagate 
simultaneously across multiple paths in the network, 
largely because they strip away information about the 
absolute strength of associations between network 
members. Here, we hypothesize that an adaptive 
cognitive map of social networks would instead retain 
this information to afford flexibility across different 
navigation contexts (Katz Communicability, KC: Katz, 
1953), and investigate whether the hippocampus, a 
region critical for spatial navigation, encodes predictive 
maps of social relations to facilitate social navigation. 

Methods 
Procedures 

We recruited 187 first-year undergraduates (100 
Female, 83 Male, 4 Other) from a network of three 
dormitories at Brown University. We measured the 
‘ground-truth’ structure of the friendship network by 
asking participants to identify who their friends are 
amongst the 186 other participants. We then probed 

participants’ (N=100) knowledge and inferences about 
friendships between other members of the network 
(personalized sub-samples of 30 individuals based on 
their graph distance from each participant) by asking 
participants to indicate whether each individual was 
friends with every other individual. A further subset of 
participants (N=98) completed a third task requiring 
inferences about how information flows through the 
network (i.e., whether news about X reaches Y, using a 
stimulus subsample of 25 individuals from the previous 
30). Finally, 43 participants who participated in all 
previous sessions underwent fMRI while passively 
viewing images of 22 other network members 
(subsampled from the previous 25 stimuli). 

Models of Representation 

The SR is a matrix M of size n x n such that M(j, k) 
encodes the probability of transitioning from state j to k 
(Stachenfeld et al., 2017). Given a transition matrix T, 
the SR is simply the discounted sum of the powers of 
the transition matrix, T (Eq. 1). 
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																											(𝐸𝑞. 1) 

In the case of social networks, the transition matrix T 
can be computed from the friendship network’s 
adjacency matrix A, which indexes whether a network 
member j is friends with network member k, A(j, k). We 
define the underlying friendship structure in the network 
as reflecting pairs of network members who mutually 
identified each other as their friends. However, because 
we had no objective metric of the participants’ 
observations in this real-world social network, we 
assumed participants acquired information about pairs 
of friends in the network with a probability pd that 
decreases with participants’ graph distance d from the 
pair, which approximates a perceived adjacency matrix 
A’ for each participant. Correspondingly, T is computed 
from A’. In contrast, KC represents the association 
strength between two network members using the 
distance-weighted adjacency matrix A’ directly (Eq. 2). 
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Crucially, this distinction formalizes KC’s assumption 
that the dynamics of information flow in a network derive 
from a propagation model based on leaky cascades as 
opposed to SR’s model of discrete random-walks 
(Zamora-López & Gilson, 2024). 
  



Results 
Network knowledge 

Overall, participants demonstrated relatively accurate 
knowledge of friendships in the network (Accuracy: M = 
0.838, SD = 0.046; d-prime: M = 0.991, SD = 0.491; d-
prime ¹ 0: t(99) = 20.203, p < .001). However, 
participants also made systematic errors in their 
friendship judgments: they more frequently inferred 
friendship between non-friend pairs who are closer to 
each other in the network (b = -1.318, SE = 0.077, z = -
17.080, p < .001; Figure 1). These ‘inaccurate’ 
inferences also depended on how closely connected 
the individual was to each pair: inaccurate inferences 
became less likely for pairs further away (interaction b 
= 0.644, SE = 0.0582, z = 11.064, p < .001). 

 
Figure 1: Participants’ friendship judgments for pairs 
of network members. 

To investigate the format of participants’ social 
network representations, we fit both a SR and KC model 
with a logistic response function to participants’ 
judgments about friendships between pairs. Posterior 
predictive checks revealed that both models 
reproduced empirically observed errors in participants’ 
judgments (SR: interaction b = 0.771, SE = 0.059, z = 
13.152, p < .001; KC: interaction b = 0.744, SE = 0.054, 
z = 13.778, p < .001). However, model comparisons 
provided strong evidence that participants’ behavior 
was better explained by the KC model (DBICSR-KC: M = 
99.825, SD = 75.953, t(99) = 13.143, p < .001; 93/100 
participants DBIC ³ 10), suggesting that participants’ 
friendship inferences were guided by a predictive 
representation that tracks the communicability of 
information between network members across 
simultaneous paths. 

Hippocampal encoding of predictive maps for 
social navigation 

How does the brain encode such an abstract 
representation of the social network? We constructed 

participant-level representational dissimilarity matrices, 
computing cross-validated Mahalanobis (crossnobis) 
distances for each pair of network members presented 
in the scanner (Diedrichsen et al., 2021; Walther et al., 
2016). Sign-inverted crossnobis distances thus index 
neural pattern similarity. We found that the model-
estimated KC value of network pairs significantly 
predicted neural pattern similarity in anterior 
hippocampus (aHC: b = 0.431, SE = 0.188, t(29) = 
2.286, p = .030), but SR did not (b = -0.061, SE = 0.060, 
t(85) = -1.018, p = .312). Control region V1 tracked 
neither KC nor SR (ps ³ .520). These results suggest 
that aHC encodes a person’s identity as a function of 
their social connectedness to the broader network. 

 To demonstrate that neural encoding of KC in aHC 
is functionally deployed for social navigation, we then 
conducted an out-of-sample test of its predictive power 
in the information flow task.  We not only found group-
level evidence that neural pattern similarity in aHC 
predicts inferences about information flow (b = 0.168, 
SE = 0.076, z = 2.193, p = .028), but also that this effect 
is significantly modulated by individual differences in 
how strongly KC predicts aHC neural pattern similarity 
(interaction b = 0.256, SE = 0.104, z = 2.454, p = .014; 
Figure 2). Again, control region V1 does not predict out-
of-sample inferences about information flow (p = .845) 
In other words, neural activity in aHC supports social 
navigation in the information flow task only when it 
encodes the communicability of information between 
network members.  

 
Figure 2: Predictive encoding of Katz in aHC predicts 
out-of-sample inferences about information flow 

Conclusion 
Our results suggest that people’s cognitive maps of 
their real-world social networks retain critical 
information about the absolute strength of pairwise 
relations. Encoded in the anterior hippocampus, these 
predictive representations facilitate social navigation by 
supporting people’s ability to infer how information 
propagates simultaneously through their network. 
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