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Abstract:  

Reward Positivity (RewP) is frequently studied 

EEG potential that has been related to prediction 

error (RPE) signals. We examine how 

reinforcement learning model variables correlate 

with intracranial measures of the RewP. We found 

local field potential (LFP) and high broadband 

frequency (HFA: 70-150 Hz) signatures of RewP, 

that when fit with temporal difference variables, 

highlight canonical structures of reward 

processing and differences in RewP amplitude for 

more impulsive choosers. Notably, HFA RewP 

was predicted by RPE. These results elucidate the 

intracranial RewP, its role in reward processing, 

and association with impulsivity. 

Keywords: reinforcement learning; reward prediction 
errors; impulsive choice; reward positivity; 
electrocorticography 

Introduction  

The RewP component is an event-related potential 

(ERP) that occurs 250-350ms after an outcome 

(Proudfit, 2015).  RewP is calculated as the amplitude 

difference between rewarded and unrewarded trials 

(Cockburn & Holroyd, 2018; Proudfit, 2015). Scalp 

EEG studies typically localize RewP over 

frontocentral contacts (e.g., Fz and Cz) predicting 

that the canonical signal is derived from anterior 

cingulate cortex (ACC) (Holroyd & Umemoto, 2016). 

However, the poor spatial resolution of scalp EEG 

limits interpretation of cortical RewP origin and 

network connectivity. Here, we utilize intracranial 

EEG to study RewP and its correlations with “signed” 

reward prediction error (RPE) (Heydari & Holroyd, 

2022). RPE occurs when there is a mismatch 

between expected and actual rewards (Preuschoff et 

al., 2006) and is a fundamental element of 

reinforcement learning (Schultz et al., 1997). We 

examine whether the RewP signal is modulated by 

impulsive choice (IC) a key component of substance 

use disorders (Huys et al., 2014). 

 
Figure 1: BART task timeline with example of single 

trial inflation and outcomes of either rewarded or 

unrewarded trials. 

Method  

To understand the neural basis of RewP, we fit RewP 

amplitudes to generalized linear models that included 

RPE and value expectation (VE) variables calculated 

from temporal difference (TD) models (Rescorla, 

1972; Sutton & Barto, 2018) of the behavior and brain 

activity of 44 neurosurgical patients performing the 

Balloon Analog Risk Task (BART; (Lejuez et al., 

2002). During BART, subjects inflate and stop 

artificial balloons to accumulate points. Unrewarded 

trials include grey control balloons that inflate to an 

indicated threshold and no points are gained, and 

popped trials that the patient fails to successfully 

stop. Rewarded trials include balloons where the 

subjects stop the balloon from popping and passive 

trials in which the balloon is inflated to its maximum 

size (Fig. 1). Subjects averaged 162  25 rewarded 

trials, 71  16 unrewarded trials. Subject IC level was 

calculated using the Kullback-Leibler divergence 

(KLD) between passive and active trial inflation time 

distributions (Hershey & Olsen, 2007). Subjects were 

classified as more impulsive (MI, logKLD: 0.51, N = 

20) or less impulsive (LI, logKLD: -0.14, N = 24). RewP 

was defined for each recorded electrode as the 

difference between mean rewarded and unrewarded 

trials between 250 and 350 ms after outcomes for 

three signals: broadband LFP, HFA, and the 

broadband spectrogram from 1- 150 Hz (spectral).  

 

 

Figure 2: BART behavior related to IC (circles = LI, 

triangles = MI). (a) IC levels for 44 subjects. (b) 

accuracy by balloon color. (c-d), significant 

continuous relationships between IC and points per 

trial (c) and accuracy (d). 

 

Intracranial correlates of RewP 

In total, we examined a total of 3211 intracranial 

electrodes (M = 72.98 ±19.08 per subject). Rank 



sum tests revealed 315 (9.81%) LFP, 297 (9.25%) 

HFA, and 1251 (38.96%) spectral contacts to encode 

RewP.  Across all electrodes, each subject’s 

outcome-aligned HFA (correlated with population 

neuronal firing near the electrode; (Manning et al., 

2009; Miller, 2010) and LFP was modeled as a linear 

combination of the RewP amplitude, reward value 

expectation (VE), RPE, and the interaction VE, RPE, 

and RewP while controlling for the variance 

introduced by patient and electrodes as random 

effects in a mixed effects model. We estimated an 

optimal learning rate using maximum likelihood 

estimation (Daw, 2009). We measured whether the 

optimal learning rate for each participant related to 

impulsivity scores and depended on rewarded vs. 

unrewarded outcomes. 

 

Figure 3: Scatterplots of HFA and LFP signals. a, HFA 

RewP difference amplitudes against z-values from 

ranksum tests across all contacts. b, HFA RewP 

difference amplitudes against z-values from ranksum 

tests across all contacts. Significant MI z-values (p < 

0.05) highlighted in green. Significant LI z-values 

highlighted in purple.  

 

Results  

Increased impulsivity predicted greater task accuracy 

(R2 = 0.186, F(2, 45) = 9.83, p = 0.0031), yet lower 

points scored during active trials (R2 = 0.258, F(2, 45) 

= 14.9, p < 0.001) (Fig 1). 

     Across all electrodes, we predicted that RewP 

would correlate with RPE and VE. For our LFP 

model, we did not see that RewP difference 

amplitude was predicted by VE (t = -1.91, p = 0.057), 

RPE (t = 0.984, p = 0.325), or actual reward (points 

scored) (t = 0.427, p = 0.669). However, for the HFA 

model we saw both RPE (t = -3.887, p = 0.0001) and 

actual reward (t = 3.532, p = 0.0004) to be 

significantly predicted by RewP amplitude. 

     We were also interested if the continuous 

impulsivity level of each participant modulated the 

association of RewP to VE and RPE variables. For 

our LFP model, we saw that RewP difference 

amplitude was predicted by an interaction between 

impulsivity and VE (t = -2.04, p = 0.042) and a 

significant three-way interaction between impulsivity, 

VE, and actual reward (t = 2.547, p = 0.011). For the 

HFA model there were no significant interactions with 

impulsivity. 

     Anatomical regions that significantly encoded LFP 

RewP include middle temporal gyrus (MTG: 9.3%), 

middle front gyrus (MFG: 9.3%), white matter (WM: 

10.8%), anterior cingulate gyrus (ACgG: 12.3%), 

medial orbital gyrus (15.0%) and hippocampus 

(HIPP: 6.1%). HFA RewP was primarily encoded in 

middle cingulate gyrus (16.6%), MTG (11.3%), MFG 

(8%), CWM (10.2%), ACgG (8.3%), HIPP (5.2%), 

and amygdala (5.3%). 

 

 
Figure 4: Examples of LFP RewP signal (grey 

window 250-350ms) in anterior cingulate gyrus, and 

orbital frontal gyrus.  

Discussion  

We examined the neural underpinnings of reward 

positivity and impulsive choice using intracranial LFP 

and HFA signals, correlated with TD variables value 

and prediction error. We observed a performance 

trade-off between reward and accuracy, with MI 

subjects opting for smaller, more immediate rewards 

and LI subjects opting for riskier, larger rewards but 

overall gaining more points. Neurally, we observed 

that HFA-related RewP correlated with RPE signals 

and actual reward. Interestingly, MI subjects tended 

to have smaller RewP amplitudes compared to LI 

subjects. These findings have implications for 

reinforcement learning, psychiatric disorders, and 

understanding the intracranial RewP. 
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