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Abstract
Invariant object recognition, a cornerstone of human vision,
enables recognizing objects despite variations in rotations,
positions, and scales. To emulate human-like generalization
across object transformations, computational models must
perform well in this aspect. Deep neural networks (DNNs) are
popular computational models for human ventral visual stream
processing, though their alignment with human performance
on visual tasks remains debated. We examine robustness
to object rotation in human adults and pretrained feedforward
DNNs. We find that object recognition performance is bet-
ter preserved in humans than in DNNs, although they show
a similar pattern of how performance drops as a function of
rotational angle. Furthermore, humans and models make dif-
ferent errors, which suggests different processing strategies.
Finally, model architecture minimally influences DNN perfor-
mance, while DNNs trained on richer visual diets and semi-
supervised learning goals excel. Our study suggests that vi-
sual diet and learning goals may play an important role in the
development of invariant object recognition in humans.
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Introduction
The ventral visual pathway exhibits a robust ability to iden-
tify objects irrespective of their orientation, position, and size
(Biederman, 1987; DiCarlo & Cox, 2007; Eger, Ashburner,
Haynes, Dolan, & Rees, 2008; Freiwald & Tsao, 2010). This
ability has been referred to as invariant object recognition.
Any comprehensive model aiming to simulate human object
recognition should emulate this capability, demonstrating pro-
ficiency in recognizing objects even when they undergo var-
ious real-world transformations (DiCarlo, Zoccolan, & Rust,
2012; Peters & Kriegeskorte, 2021; Bowers et al., 2022). Re-
cent work in computer vision has begun to examine robust-
ness of deep neural networks (DNNs) to variations in object
orientation, particularly through the use of 3D graphics ren-
derers (Madan et al., 2022; Alcorn et al., 2019; Abbas & Deny,
2022). However, studies comparing performance of these net-
works to human capabilities are lacking. This leaves open the
following questions: Are DNNs as invariant to variations in ob-
ject orientation as humans are? Which design features make
them most invariant?

We addressed these questions by developing a stimulus
set that systematically varies object orientation, and that en-
abled direct comparison between humans and DNNs on ob-
ject recognition performance. Furthermore, we tested a di-
verse range of DNNs with different design features to explore
what makes some DNNs display more invariant object recog-
nition behaviour than others. Design features of interest in-
cluded network architecture, learning objective, and visual diet
(Smith, Jayaraman, Clerkin, & Yu, 2018; Konkle & Alvarez,
2022; Goyal & Bengio, 2022). This approach provides an op-
portunity to estimate the unique contribution of each design
feature to invariant object recognition.

Figure 1: Summary of human and DNN model performance
for images of objects that were rotated in depth. The dashed
line at the bottom denotes chance performance. Shaded ar-
eas indicate standard error of the mean across humans or
models.

Figure 2: Error consistency for humans and DNN models
when categorizing objects after in-depth rotation. Results re-
veal a gradient from low consistent errors (lighter colors) be-
tween human participants and DNN models, to moderately
consistent errors among human participants, to highly consis-
tent errors (red) among DNN models.



Figure 3: Explained variance in model performance achieved
through linear regression, using model architecture (base and
complexity), learning objective, and visual diet as predictor
variables. Asterisks indicate regression models that explained
significantly more variance than a regression model with a
constant term only.

Methods

Human experiment

We recruited 17 healthy human adults for the study. Two par-
ticipants were excluded due to low performance on practice
blocks, leaving 15 participants for analysis (mean age: 25
years, five females). The experiment consisted of 13 blocks
(128 trials per block). The first three blocks were practice
blocks and the remaining were experimental blocks. The im-
ages for these blocks were generated using the ThreeDWorld
platform (Gan et al., 2021), by applying object rotation in depth
on our stimulus set of 176 sourced 3D objects from online
repositories. Objects were sourced from 16 categories known
to both humans and DNNs (Geirhos et al., 2020, 2021).

On each trial, a grey screen with a central white fixation
cross was presented, followed by an image displayed for a du-
ration of 200 ms. The image was followed by a coloured mask
for 200 ms, which served to increase task difficulty and reduce
effects of recurrent processing on performance. The latter en-
ables a fairer comparison between human participants and
DNNs, whose architectures only allow for feedforward infor-
mation flow (Geirhos et al., 2020). The next phase involved
presenting the participants with a response screen with multi-
ple category buttons. This remained available for a maximum
period of 1500 ms or until a selection was made by the partici-
pant, whichever was shorter. During the response phase, par-
ticipants were tasked with selecting the category they deemed
most congruent with the stimulus. The experiment took ap-
proximately 1.5 hours to complete.

Results & Discussion

Humans are more invariant than DNNs to object
rotation in depth

In the context of object rotation in depth, our analysis showed
that humans and DNNs demonstrate a parallel pattern of per-
formance as the degree of rotation varies. However, humans
consistently surpass model accuracy, as observed in Figure 1.
Both humans and models face challenges when objects are
rotated to their lateral sides, leading to a notable drop in per-
formance. This challenge becomes even more pronounced
when objects are observed from unconventional angles, such
as the top or bottom.

Humans and DNNs make different errors

Our investigation not only highlights the discrepancy in er-
ror rates between humans and DNNs but also underscores
the distinct nature of their error patterns (Figure 2). We em-
ployed an error consistency measure that accounts for the an-
ticipated consistency between two observers based on their
task performance (Geirhos et al., 2021). Our results further
indicate that DNNs tend to exhibit relatively high error consis-
tency among themselves, with the exception of some mod-
els such as the Masked AutoEncoders (MAE). One potential
explanation for these findings is the visual diet experienced
during learning. While DNNs often share a common training
dataset, leading to a certain level of similarity in their learned
representations, humans experience diverse and unique vi-
sual diets throughout their developmental trajectory. This indi-
vidualistic exposure to visual stimuli can contribute to a higher
degree of dissimilarity among humans than among DNNs.

Visual diet and learning objectives are important for
developing invariant object recognition

In the context of assessing the factors influencing model per-
formance, Figure 3 presents explained variance in model per-
formance achieved through linear regression. We employed
model architectural base, model complexity, learning objec-
tive, and visual diet as predictor variables to estimate their
contributions to the observed variability in model performance.
Architectural base reflects whether a DNN is a convolutional
or a vision transformer network; model complexity reflects the
size of the network; learning objective reflects whether the
network was trained using a supervised, semi-supervised, or
self-supervised learning objective; and visual diet reflects the
number of images in the training set.

We found that architectural distinctions between models
may not be the primary driver of the observed variation in
their performance. In contrast, model complexity emerges as
a moderate determinant, accounting for approximately 5% of
the variability in model performance. Furthermore, learning
objectives and visual diet surfaced as more influential factors,
contributing to roughly 20% and 15% of the variability in model
performance, respectively.
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