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Abstract
Neurofeedback (NF), including its specialized form De-
coded Neurofeedback (DecNef), holds great promise for
improving mental health and cognitive function by al-
lowing individuals to voluntarily control their brain ac-
tivity. However, there exists vast subject-to-subject and
region-to-region variability in neurofeedback outcomes
and the causal mechanisms involved in successful neu-
rofeedback are largely unknown. In this paper, we inves-
tigate the neural mechanisms behind this variability us-
ing whole-brain causal connectomes derived from func-
tional Magnetic Resonance Imaging (fMRI) data from a
DecNef study aimed at reducing common fears via sub-
conscious induction of feared images. During NF, we
found strongest causal connections among regions of
the attention and somatomotor subnetworks. Addition-
ally, the net strength of causal effects between most pairs
of subnetworks was significantly correlated with mean
NF score, though with different signs. Specifically, we
found most connections among visual, subcortical, de-
fault mode, and dorsal attention subnetworks to support
NF success, while most connections among ventral at-
tention, somatomotor, limbic, and control subnetworks
correlated negatively with NF scores.

Keywords: decoded neurofeedback; causal discovery; brain
networks

Introduction
Neurofeedback (NF) offers a unique avenue for influencing
neural dynamics (Watanabe et al., 2017) and has become an
attractive therapeutic option for conditions such as Attention-
Deficit Hyperactivity Disorder (ADHD) (Enriquez-Geppert et
al., 2019; Arns et al., 2020), anxiety (Pindi et al., 2022; Tolin
et al., 2020), and substance use disorders (Russo et al., 2023;
Trudeau, 2005; Fielenbach et al., 2019). Decoded NF (Dec-
Nef) is a particular form of NF that allows for the manipula-
tion of precise neural activity patterns associated with spe-
cific cognitive processes or behaviors, without participants’
explicit awareness of the experimental goals (Shibata et al.,
2019). DecNef has been documented to induce changes in
visual sensitivity and color perception (Amano et al., 2016),
fear memory modulation (Koizumi et al., 2016; Taschereau-
Dumouchel et al., 2018), enhancement of perceptual confi-
dence (Cortese et al., 2016), and facial preference (Shibata
et al., 2016). However, a notable challenge in neurofeedback
stems from the variability in participants’ ability to alter their
target brain activity. Around 30% of NF participants struggle
to self-regulate (Hammer et al., 2012; Sitaram et al., 2017)
and some even experience diminished feedback scores over
time (Sitaram et al., 2017). Understanding the neural mech-
anisms of self-regulation thus has significant potential for im-
proving experimental and clinical protocols as well as advanc-
ing neurofeedback tools (Sitaram et al., 2017).

In this study we hypothesize that individual variations in
neurofeedback outcomes stems from and can thus be at-

tributed to differences in how different networks of brain re-
gions causally interact with each other. Supporting the po-
tential utility of this approach, a recent study employed Dy-
namical Causal Modeling (DCM) to find the brain processes
associated with successful brain self-regulation of supplemen-
tary motor area (SMA) via NF (Vargas et al., 2023), and found
significant distinctions in causal connectivity patterns between
successful and non-successful learners. However, this study
investigated causal connections only among SMA and three
other regions of interest (ROIs). In contrast, the complexity
of target brain activations in neurofeedback and the subjects’
complete unawareness of them make whole-brain causal dis-
covery essential for discovering the neural mechanisms un-
derlying DecNef.

Method

Data and Experimental Setup. In this study, we used whole-
brain fMRI data from n = 10 subjects participating in a Dec-
Nef study aimed at reducing common fears via subconscious
induction of feared images (Taschereau-Dumouchel et al.,
2018). As is typical in DecNef, subjects were unaware of the
target of NF and used trial and error to find mental strate-
gies for maximizing end-of-trial scores, which measured how
closely the subject’s voxel-wise response in ventral temporal
cortex matched a target pattern evoked during viewing of a
feared animal. fMRI was collected with TR = 2s (see more
details at (Cortese et al., 2021)). Each subject participated in
3 DecNef sessions with a minimum of 8 runs per session and
16 trials per run.

fMRI Preprocessing. We preprocessed the data using
fMRIPrep (Esteban et al., 2019) with default parameters, fol-
lowed by 9P confound regression (Ciric et al., 2017) and av-
eraging into 100 cortical (Schaefer 100x7 atlas (Schaefer et
al., 2018)) and 16 subcortical parcels (Melbourne Scale I at-
las (Tian et al., 2020)).

Causal Discovery. We used the recently proposed
CaLLTiF (Causal discovery for Large-scale Low-resolution
Time-series with Feedback) algorithm (Arab et al., 2023) to
extract whole-brain causal connectomes during DecNef. We
truncated data to the minimum amount available for all sub-
jects, resulting in 8 runs per subject-session and 175 fMRI
volumes per run. To ensure a sufficient number of samples for
CaLLTiF, we computed one causal graph for every pair of runs
in each session. This resulted in

(8
2

)
= 28 graphs per session

and a total of 840 causal graphs across all subjects.
While CallTiF was originally designed for handling low-

resolution time series (TR = 0.72s in the original study), we
further modified it to handle the even slower fMRI data we
had (TR = 2s). In CaLLTiF a causal link is established from
a node (parcel) Xi to node X j with a lag of τ ≥ 0 samples if
Xi(t − τ) is significantly correlated with X j(t) after condition-
ing on all other nodes and their lagged values (ensuring cor-
relation is not due to a common cause or mediation through
other nodes). When τ = 0, a bidirectional feedback connec-
tion is placed between Xi and X j, unless when at least one



variable also causes the other with τ > 0, in which case the
direction of causality is determined based on the lagged ef-
fect(s). However, as noted in (Arab et al., 2023, Supp. Note
1), lagged effects become exponentially harder to detect with
increasing TR and finite samples, even though the presence
of a statistically significant contemporaneous effect (τ = 0) is
proof that a lagged effect must exist. Therefore, in this work
we slightly modified CaLLTiF such that for pairs of nodes with
a statistically significant contemporaneous effect (detected at
the originally suggested strict level α = 0.0025), we relaxed
the threshold of statistical significance on their lagged effects
from α = 0.0025 to α = 0.05.

Results and Discussion

Somatomotor and Attention Networks Exhibit Strongest
Causal Connections During Neurofeedback. Both func-
tional and causal graphs are highly consistent among sub-
jects, sessions, and runs, while causal graphs are generally
sparser than functional graphs due to their pruning of spurious
correlations (Fig. 1a). Notably, in addition to strong internal
connections within all 8 functional subnetworks (subcortical +
7 cortical (Yeo et al., 2011)), both functional and causal graphs
show strong connections between attention (ventral and dor-
sal) and somatomotor subnetworks.

Furthermore, the lower density of causal graphs is not uni-
form across the whole network, but rather precisely structured
along functional subnetworks. In particular, within-subnetwork
connections have become relatively denser (relative to full
graph density) in causal graphs compared to functional graphs
(Fig. 1b). Even more notably, connections between attention
and somatomotor subnetworks have also become relatively
denser in the causal graphs, whereas the opposite is true for
sets of randomly selected 3 subnetworks (Fig. 1c).

Strengths of Causal Connections Predict Neurofeed-
back Success. We summarized each parcel-level causal
graph into a subnetwork-level causal graph by measuring the
percentage of edges that go from parcels within one subnet-
work to those within another (Fig. 2a). We then measured if
the strength of each edge in this graph predicts how success-
ful that subject was in inducing the desired brain activation
pattern (DecNef score).

Interestingly, we found most subnetwork-level edges to cor-
relate significantly with score (Fig. 2b). In particular, vi-
sual, subcortical, default mode, and dorsal attention sub-
networks form a cluster where almost all edges positively
and significantly correlate with scores. On the other hand,
ventral attention, somatomotor, limbic, and control subnet-
works form a cluster within which most causal effects signif-
icantly negatively correlate with the score. Most notably, the
outstandingly-strong causal links within and between ventral
attention and somatomotor networks largely impede neuro-
feedback success. In contrast, almost all edges associated
with the visual and subcortical networks, despite being weak
on average, support neurofeedback success.

The vast positive associations that we observed between
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Figure 1: (a) Average functional and causal graphs during
DecNef. (b) Distribution (mean ± 1 s.e.m.) of the differ-
ence of relative internal density of each functional subnetwork

(
ρcausal

subnet
ρcausal

full
− ρfunc

subnet
ρfunc

full
). (c) Same as in (b) but for density of connec-

tions between attention and somotomotor subnetworks (red)
vs. between random subsets of 3 subnetworks (gray).
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the strength of causal connections and neurofeedback suc-
cess, particularly those involving dorsal attention, visual, de-
fault mode, and subcortical networks, underscore the active
role of these networks in processing external stimuli, like vi-
sual feedback, and their impact on the ventral temporal area,
a key focus of this neurofeedback experiment. The typically
inactive default mode network during tasks requiring external
attention, for instance, might heighten vigilance by monitoring
personally relevant or internally generated stimuli. Conversely,
negative correlations within limbic, ventral attention, somato-
motor, and control networks suggest their interference with
or irrelevance to the targeted processes required for NF suc-
cess. Overall, our results provide initial insights into the causal
mechanisms underlying DecNef and highlight the promise of
causal discovery in understanding variability in NF success.

Vis Su
b

DMN

Dors
-At

t

Ve
nt-

Att

So
m-M

ot Lim Con
t

Vis

Sub

DMN

Dors-Att

Vent-Att

Som-Mot

Lim

Cont

Average Subnetwork Graph

0.1

0.3

0.4

0.5

0.6

0.7

Vis Su
b

DMN

Dors
-At

t

Ve
nt-

Att

So
m-M

ot Lim Con
t

Vis

Sub

DMN

Dors-Att

Vent-Att

Som-Mot

Lim

Cont

Correlation with Scores

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

Figure 2: (a) Average subnetwork-level graph across subjects
and sessions. (b) Spearman correlation, across subjects and
sessions, between strength of each edge in the subnetwork-
level graph and the average of neurofeedback score obtained
during the two runs used to generate each graph. All non-
gray blocks show a statistically significant correlation (t-test,
α = 0.05, FDR-corrected for multiple comparisons.
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