
Algorithms for Neural Networks

John Morrison (jmorrison@barnard.edu)
Departments of Philosophy and Cognitive Science, Barnard College, Columbia University

3009 Broadway, New York, NY 10027

Abstract
Algorithms play a central role in cognitive science. They
help explain how we perceive, speak, remember, navi-
gate, and decide. But it is unclear what it means say that
an artificial or biological neural network “implements” an
algorithm. The standard proposal is that a neural network
implements an algorithm when it has parts correspond-
ing to the steps of the algorithm. But we haven’t been
able to find many such parts, perhaps because neural net-
works rarely have them. This has led some to deny that
neural networks implement algorithms. As an alternative,
I propose that a neural network implements an algorithm
in virtue of how quickly it learns alternative input-output
mappings. This proposal draws on the learning-to-learn
literature in psychology and the transfer learning litera-
ture in machine learning. I demonstrate that this proposal
productively applies to a number of networks and tasks.
It is therefore a promising new framework for integrating
cognitive science and neuroscience.

Keywords: Neural Networks; Algorithms; Transfer Learning;
Mechanistic Interpretability; Explainable AI

Since the beginning of neuroscience and machine learning,
there has been a desire to understand neural networks in
terms of algorithms (McCulloch & Pitts, 1943; von Neumann,
1958). It is also a defining commitment of cognitive science
that brains, at least, implement algorithms (Newell & Simon,
1972; Marr, 1983). But what does it mean to say that a neural
network “implements” an algorithm?

One proposal is that a neural network implements an algo-
rithm when its parts correspond to the steps of the algorithm.
As a toy example, consider the input-output mapping in Ta-
ble 1. At least in principle, a network trained on this mapping
might implement the algorithm: Double the input and then add
two — 2x+2. Alternatively, it might implement the algorithm:
Add one to the input and then double the sum — 2(x+1). Ac-
cording to this proposal, the network implements 2(x+1) only if
it has an intermediate part corresponding to x+1, and it imple-
ments 2x+2 only if it has an intermediate part corresponding
to 2x. This kind of proposal is standard in the philosophical
literature about implementation (Piccinini & Maley, 2021). It is
also standard in the machine learning literature on mechanis-
tic interpretability (Geiger, Lu, Icard, & Potts, 2021; Elhage et
al., 2021; Wang, Variengien, Conmy, Shlegeris, & Steinhardt,
2022; Olsson et al., 2022; Nanda, Chan, Lieberum, Smith, &
Steinhardt, 2023). But, at least so far, it hasn’t proven pro-
ductive. For the vast majority of neural networks, we haven’t
found the relevant parts, perhaps because they don’t exist.
Consider that, at least so far, the literature on mechanistic in-

terpretability has only provided insight into a handful of circuits
on a handful of tasks in a handful of networks.

Table 1: input-output mapping

input output
1 4
2 6
3 8
4 10

Another proposal is that whether a neural network imple-
ments an algorithm depends only on its inputs and outputs,
including how it generalizes to new inputs. This is the standard
approach in the machine learning literatures on transitive in-
ference and compositionality (De Lillo, Floreano, & Antinucci,
2001; Kay et al., 2023; Lippl, Kay, Jensen, Ferrera, & Abbott,
2023; Hupkes, Dankers, Mul, & Bruni, 2020; Lake & Baroni,
2023). But this proposal does not provide as much insight
into neural networks as we would like because it can’t dis-
tinguish between algorithms like 2x+2 and 2(x+1). In many
cases, we would like a way of choosing between algorithms
with the same inputs and outputs.

Perhaps due to dissatisfaction with these proposals, some
deny that we can understand neural networks in terms of al-
gorithms (P. S. Churchland, 1986; P. M. Churchland, 1989;
Horgan & Tienson, 1996; Ramsey, 2007; Lillicrap & Kording,
2019; Cao & Yamins, 2021). But this would be a disappoint-
ment, because algorithms are central to cognitive science,
and many of us think that cognitive science has a lot to of-
fer neuroscience and machine learning.

My proposal is that neural network implements a neural net-
work because of its learning speed, in particular the number of
learning events required to learn alternative input-output map-
pings. I call this the “learning aptitude definition.” Its details re-
quire careful introduction. But, to get a feel for it, consider an
exceptionally simple artificial network: a fully connected net-
work consisting of one input node, three intermediate layers
with eight nodes, four nodes, and eight nodes, and then one
output node. Suppose that, after a relatively brief training pe-
riod, it learns to map 1, 2, 3, and 4 to the outputs specified in
Table 1. We’d like to know: Is this network implementing 2x+2,
2(x+1), or has it merely memorized the output for each input?
My proposal is that we should consider how long it takes the
network to learn the other mappings, including the mappings
in Table 2.

At a lower level of description, a network’s learning speed is
due to its architecture and how its weights are adjusted in re-
sponse to feedback. But at the higher level of abstraction I’m



Table 2: alternative input-output mappings

input output
1 6
2 10
3 14
4 18

input output
1 8
2 12
3 16
4 18

proposing, it is due to the number of adjustments to its algo-
rithm. In particular, if a network implements 2x+2, one adjust-
ment is necessary to learn the mapping on the left (from 2x+2
to 4x+2), while two adjustments are necessary to learn the
mapping on the right (from 2x+2 to 4x+4). It will therefore be
faster at learning the mapping on the left. In contrast, if a net-
work implements 2(x+1), one adjustment is necessary to learn
the mapping on the right (from 2(x+1) to 4(x+1)), while two
adjustments are necessary to learn the mapping on the left
(from 2(x+1) to 4(x+1/2)). It will therefore be faster at learning
the mapping on the right. And if the network just memorized
the output for each input, four adjustments are necessary be-
cause each output must be individually adjusted. It therefore
won’t be faster at learning either mapping. We might think of
the algorithm’s parameters as knobs within the network that
must be turned as it learns a new mapping. The more the rel-
evant knobs need to be turned, the longer it takes the network
to learn the new mapping. Of course, unlike ordinary knobs,
these knobs aren’t easy to find because they emerge from the
complex, high-dimensional process responsible for adjusting
the network’s weights. But that doesn’t make them any less
real.

This proposal builds on an insight originally found in the
learning-to-learn literature in psychology (Cormier & Hagman,
1987), and then in the transfer learning literature in machine
learning (Thrun & Pratt, 2012; Ruder, 2017). These literatures
have a practical focus; their goal is to help people and neural
networks learn faster (Vafaeikia, Namdar, & Khalvati, 2020;
Zhou et al., 2023). But they are grounded in the insight that it
takes less time to learn a new task when some of the the rep-
resentations and algorithms learned on a previous task can
be reused. I propose treating this insight as definitive of what
it is for a network to implement an algorithm.

This proposal has a number of surprising consequences.
For example, it implies that which algorithm a network imple-
ments depends on its learning rule and its training data. In the
paper, I argue that these consequences are not as objection-
able as they might first appear.

As an illustration, consider two fully connected networks
with the architecture described above (1-8-4-8-1) but with dif-
ferent initializations. After the loss for these networks dropped
below .1 on the training data generated by 2x+2, I fine-tuned
them on a series of six other mappings (4x+2, 4x+4, 8x+2,
8x+8, 12x+2, 12x+12). Figures 1 and 2 depict their loss dur-
ing training. The first network was faster at learning the or-
ange mappings (4x+4, 8x+8, 16x+16), while the second net-

work was faster at learning the blue mappings (4x+2, 8x+2,
16x+2). According to the learning aptitude definition, it follows
that the first network does not implement 2x+2 but might im-
plement 2(x+1), while the second network does not implement
2(x+1) but might implement 2x+2.

blue = 4x+2 blue = 8x+2 blue = 12x+2

orange = 4x+4 orange = 8x+8 orange = 12x+12

Figure 1: First network trained on 2x+2

blue = 4x+2 blue = 8x+2 blue = 12x+2

orange = 4x+4 orange = 8x+8 orange = 12x+12

Figure 2: Second network trained on 2x+2

This is just one example. In the paper, I consider other
models, tasks, and algorithms, including CNNs trained on Im-
ageNet that implement different classification algorithms. I
also consider the extent to which the distinctions revealed by
learning speed are also revealed by geometric analyses such
as RSA.

References
Cao, R., & Yamins, D. (2021). Explanatory models

in neuroscience: Part 2 – constraint-based intelligibility.
(arXiv:2104.01489)

Churchland, P. M. (1989). A neurocomputational perspective:
The nature of mind and the structure of science. The MIT
Press.

Churchland, P. S. (1986). Neurophilosophy: Toward a unified
science of the mind-brain. The MIT Press.

Cormier, S. M., & Hagman, J. D. (1987). Transfer of learning:
Contemporary research and applications. Academic Press.



De Lillo, C., Floreano, D., & Antinucci, F. (2001). Transitive
choices by a simple, fully connected, backpropagation neu-
ral network: Implications for the comparative study of tran-
sitive inference. Animal Cognition, 4, 61-68.

Elhage, N., Nanda, N., Olsson, C., Henighan, T.,
Joseph, N., Mann, B., . . . Olah, C. (2021). A
mathematical framework for transformer circuits.
Transformer Circuits Thread . (https://transformer-
circuits.pub/2021/framework/index.html)

Geiger, A., Lu, H., Icard, T., & Potts, C. (2021). Causal ab-
stractions of neural networks. (arXiv:2106.02997)

Horgan, T., & Tienson, J. (1996). Connectionism and the
philosophy of psychology. MIT Press.

Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Com-
positionality decomposed: How do neural networks gener-
alise? (arXiv:1908.08351)

Kay, K., Biderman, N., Khajeh, R., Beiran, M., Cueva, C. J.,
Shohamy, D., . . . Abbott, L. (2023). Emergent neural dy-
namics and geometry for generalization in a transitive infer-
ence task. bioRxiv . doi: 10.1101/2022.10.10.511448

Lake, B. M., & Baroni, M. (2023). Human-like systematic gen-
eralization through a meta-learning neural network. Nature,
623, 115–121.

Lillicrap, T. P., & Kording, K. P. (2019). What does it mean to
understand a neural network? (arXiv:1907.06374)

Lippl, S., Kay, K., Jensen, G., Ferrera, V. P., & Ab-
bott, L. (2023). A mathematical theory of relational
generalization in transitive inference. bioRxiv . doi:
10.1101/2023.08.22.554287

Marr, D. (1983). Vision: A computational investigation into the
human representation and processing of visual information.
Henry Holt & Company.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the
ideas immanent in nervous activity. The Bulletin of Mathe-
matical Biophysics, 5, 115–133.

Nanda, N., Chan, L., Lieberum, T., Smith, J., & Steinhardt,
J. (2023). Progress measures for grokking via mechanistic
interpretability. (arXiv:2301.05217)

Newell, A., & Simon, H. (1972). Human problem solving.
Prentice-Hall.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N.,
Henighan, T., . . . Olah, C. (2022). In-context learning and
induction heads. (arXiv:2209.11895)

Piccinini, G., & Maley, C. (2021). Computation in physical
systems. In E. N. Zalta (Ed.), The Stanford encyclopedia
of philosophy. Metaphysics Research Lab, Stanford Univer-
sity.

Ramsey, W. M. (2007). Representation reconsidered. Cam-
bridge University Press.

Ruder, S. (2017). An overview of multi-task learning in deep
neural networks. (arXiv:1706.05098)

Thrun, S., & Pratt, L. (2012). Learning to learn. Springer
Science & Business Media.

Vafaeikia, P., Namdar, K., & Khalvati, F. (2020). A brief re-
view of deep multi-task learning and auxiliary task learning.

(arXiv:2007.01126)
von Neumann, J. (1958). The computer and the brain. New

Haven: Yale University Press.
Wang, K., Variengien, A., Conmy, A., Shlegeris, B., &

Steinhardt, J. (2022). Interpretability in the wild: A
circuit for indirect object identification in GPT-2 small.
(arXiv:2211.00593)

Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., . . .
Sun, L. (2023). A comprehensive survey on pretrained
foundation models: A history from BERT to ChatGPT.
(arXiv:2302.09419)


