
Embodied Memory Through Gaze Control

Ruiyi Zhang (rz31@nyu.edu)
Tandon School of Engineering, New York University

Brooklyn, NY 11201 USA

Xaq Pitkow (xpitkow@andrew.cmu.edu)
Neuroscience Institute & Department of Machine Learning, Carnegie Mellon University

Pittsburgh, PA, 15213 USA

Dora E Angelaki (da93@nyu.edu)
Center for Neural Science & Tandon School of Engineering, New York University

New York, NY 10003 USA

Abstract

To tackle complex natural tasks, one must maintain an
accurate internal model of the environment to support
actions. However, neural representations of the environ-
ment are noisy and rarely accurate. Fortunately, animals
with fovea and acute vision can quickly scan the envi-
ronment and foveate locations relevant to the task, en-
abling the updating and maintenance of an accurate in-
ternal model. We hypothesize that eye movements can be
used as embodied memory to locate the evolving latent
goal, and this mechanism benefits both biological and
artificial intelligence. To investigate this, we developed
a deep reinforcement learning (RL) agent with free eye
movements and trained both the agent and macaques in
a navigation task. We found that, without explicit instruc-
tion, both the agent and macaques naturally developed
the use of eye movements as embodied memory for the
latent goal to support navigation, resulting in better per-
formance. The agent’s artificial neurons also explained
posterior parietal cortex (PPC) data from macaques.
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Introduction

Our memory is fallible. We leverage mnemonic strategies to
help us: we jot down notes, we count on our fingers, and we
keep track of hidden objects by pointing to where they should
be. These strategies use our bodies or the external world to
retain information when needed. We hypothesize that we use
our eyes as an embodied memory in the same way.

Active vision facilitating natural tasks is easy to fathom.
Eyes swiftly parse the task scene, actively interrogating and
efficiently gathering useful information to construct an inter-
nal belief of the outside world (Schroeder, Wilson, Radman,
Scharfman, & Lakatos, 2010). For example, in navigation,
subjects might compute their bearing with respect to visible
landmarks. Even more remarkable is that eye movements
contribute to landmark-free navigation: dynamic beliefs about
latent goal location can be reflected in macaques’ oculomotor
behavior (Lakshminarasimhan et al., 2020).

Although eye movements are a well-honed neural machin-
ery in the brain, they are still largely overlooked in artificial
intelligence (AI). To bridge neuroscience and AI, here, we de-
veloped a deep RL agent equipped with eye movements and
trained both this agent and macaques in a navigation task.
Our result showed that the agent developed behaviors and
neural computations similar to macaques, leveraging gaze as
embodied memory to facilitate task-solving—an example of
using AI models to understand the brain. Flipping the sign
of inspiration, our agent with eye movements also achieved
better performance than without this brain mechanism.

Results
Macaques and the agent controlled a joystick to steer to a
transiently cued goal location in a VR environment. Self-
location is not directly observable due to the lack of stable
landmarks; instead, the subject needs to use optic flow cues
on the ground to perceive self-motion and perform path inte-
gration. At the start of each trial, a target briefly blinked at
a random location within the field of view on the ground be-
fore disappearing. The joystick controlled forward and angular
velocities, allowing free movement in 2D. The objective was to
steer to the memorized target location. A reward was provided
if stopped in the reward zone, a region centered at the target.

Deep RL agents with eye movements
Navigation as a sequential decision process can be modeled
through the RL framework (Sutton & Barto, 2018). Briefly, RL
represents the task as a Markov Decision Process (MDP),
consisting of states (e.g., locations), feasible transitions be-
tween states based on the subject’s actions (e.g., steering),
and rewards associated with states and actions (e.g., stop-
ping in the reward zone). Optimal performance involves com-
puting the expected value of potential actions at a given state
and selecting the action with the highest value. However, real-
world scenarios, as in our task, typically render the states par-
tially observable (e.g., the target is observable only in the trial
beginning). Consequently, MDP-based models must incorpo-
rate a belief that estimates the state to support decision mak-
ing. Our model formulation (Fig. 1A) has states represent-
ing a combination of physical states in the world and the sub-
ject’s beliefs. Transitions between states now encompass both



physical locomotion and changes in beliefs, with beliefs main-
tained through noisy working memory [via a recurrent neural
network (RNN)] and updated by gaze and other observations.
Thus, actions used to reach goals include both locomotory ac-
tions (causing transitions in environment) and eye movement
oculomotory actions (causing transitions in beliefs). Conse-
quently, values of reaching the target can be assigned not only
to locomotory actions that steers to the target but also to eye
movements that aid the navigation process.

Gaze as embodied memory of navigation goal

The RNN integrates evidence to form an internal belief of the
target to support behaviors (Fig. 1A). Using available infor-
mation as inputs, along with the sparse reward signal when
reaching the reward zone, our agent learned steering behav-
iors (Fig. 1B) and eye movement behaviors (Fig. 1C) that
closely aligned with those of monkeys (Fig. 1D). Note that eye
movements for both the agent and monkeys were not explic-
itly guided, and both were free to select any eye actions that
aided steering to the goal. This behavioral similarity suggests
the same role of eye movements in this task. One way to
investigate this role is to restrain eye movements during nav-
igation (Fig. 1E): by decreasing the RNN’s working memory
capacity (via imposing higher noise in RNN’s hidden state),
the eye-moving agent maintained good performance while the
eye-fixed agent without eye movements cannot. This result
suggests that gaze control is another form of memory.
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Figure 1: A. Agent. B. Overhead view of the spatial distribu-
tion of targets (dots) and subjects’ trajectories. C. First-person
view of the eye movement trajectories. Purple dots: initial eye
position in each trial. D. Similarity of steering (in B) and eye
movement (in C) trajectories between the agent and two mon-
keys for the same set of targets. E. Performance for two types
of agents, one allowing eye movements and the other not,
trained with varied noise uncertainties in the RNN’s working
memory.

To further investigate the role of eye movements, we mea-
sured how closely the eyes tracked the target. We found that
both monkeys and the agent tightly tracked the target in the
trial beginning, with tracking accuracy decreasing over time
after the target became invisible (Fig. 2A). This target track-
ing error (the difference between the gaze and target posi-
tion) highly correlated with the steering error (the difference
between the target and stop location; Fig. 2B), indicating that
subjects’ belief about goal location (stop location) becomes
more inaccurate when gaze does not track the target well. In-
deed, gaze correlated more closely with the steering stop lo-
cation over time than with the true target position (Fig. 2C),
and both macaques’ PPC neurons and the agent’s RNN neu-
rons encoded the stop location more prominently than the tar-
get location (Fig. 2D). These findings suggest that gaze dic-
tates the navigation goal. Another more direct way to inves-
tigate is through causal manipulation: we perturbed agents’
eye movements and found that the steering error matched the
perturbation direction and magnitude applied on gaze, further
confirming the embodied memory role of eye movements for
locating navigation goals (Fig. 2E).
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Figure 2: Gaze is embodied memory of the navigation goal.
A. Target-tracking (correlation between gaze and target posi-
tion) decreased over time. B. Target-tracking error correlated
with steering error. C. Correlation between gaze and stop lo-
cation minus correlation between gaze and target location. D.
Linear decodability of stop location minus linear decodability
of target location. E. Perturbing eye position biased steering
to the perturbation direction.

Conclusion

We demonstrated that eye movements in both biological and
artificial systems can serve as embodied memory for task
goals. Our model with eye movements gained better perfor-



mance and can explain animal’s behaviors and neural compu-
tations.
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