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Abstract
Biological brain networks universally exhibit distinct sim-
plicity: they are composed of modular components that
may function relatively independently. Yet, there’s cur-
rently no consensus on the origins of modularization. In
this study, we trained single recurrent neural networks
on multiple cognitive tasks requiring working memory,
decision-making, classification, and inhibitory control,
thereby simulating real-world challenges. Our findings
reveal that under conditions of constrained network size,
multitasking promotes greater modularity compared to
scenarios involving fewer tasks. This implies that mod-
ularity may arise as an adaptation in models required to
handle multiple tasks when the units available for compu-
tation are limited. Additionally, we compared the learning
processes of dynamically evolving networks, which form
new connections periodically, with those of statically
fixed networks, where connections are pre-established
at the start of training. We found that models grow-
ing sequentially lead to higher modular structures across
all wiring rules. Our study proposes that functional de-
mands consequently influence structural formation, of-
fering new insights into neuroscience.
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Introduction
The biological brain exhibits formidable computational abili-
ties, efficiently processing complex and dynamic information
to perform diverse and challenging tasks. Contrary to what
might be expected from such complexity, the underlying struc-
ture of the brain’s network is not densely disordered or chaotic.
Instead, it demonstrates remarkable simplicity: the network
is composed of modular components that function relatively
independently, and it features the recurrent use of specific
neural circuit patterns, known as network motifs. The origins
of these structural characteristics, however, remain a subject
of inquiry. Previous research has investigated various con-
tributing factors, including modularly varying goals ((Kashtan
& Alon, 2005)), constraints related to wiring costs ((Clune,
Mouret, & Lipson, 2013)), and adaptations to minimize catas-
trophic forgetting ((Ellefsen, Mouret, & Clune, 2015)).

In this work, we introduce a novel hypothesis positing that
the functional demands of tasks inherently sculpt the struc-

tural organization of the brain. Through extensive experimen-
tation, we show that a modular architecture may emerge as a
necessary adaptation for the biological brain to manage mul-
tiple tasks efficiently under computational constraints. More-
over, our findings indicate that dynamically evolving networks
yield structures with greater modularity and pronounced per-
formance disparities, reflecting the brain’s inclination towards
highly organized and individually distinct differences.

Methods

To investigate how the adaptation to multitasks helps function-
ally shape the modular structure, we trained a single RNN
model (Fig.1) to perform 20 inter-related cognitive tasks fol-
lowing the settings of (Yang, Joglekar, Song, Newsome, &
Wang, 2019).

Figure 1: A trained RNN shows a modular structure to support
the learning of multitaks.

During the training period, tasks were randomly selected
from a set, and batches of trials for the selected task were
generated and fed to the RNN model.

To characterize the learning behavior of the RNN through
training, we regularly employed a widely used community dis-
covery technique on the recurrent weight matrix to calculate
its modularity (Leicht & Newman, 2008), which can be written
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where Ai j is defined to be the absolute value of Wi j (an ele-
ment of the recurrent weight matrix of the RNN model), δ is the
Kronecker delta symbol, and ci is the label of the community
to which vertex i is assigned.

Results
Multitask adaption
We study RNNs with varying sizes of recurrent layers, pre-
senting how modularity relates to the number of tasks (Fig.2).

Figure 2: Modularity and the number of tasks exhibit a signif-
icant positive relationship as the model size decreases. Dark
lines represent the mean of 5 runs, and light areas indicate
the standard error.

We observed a significant and intriguing phenomenon:
when the model scale is large, the network’s capacity is suf-
ficient to support multitasking learning (as indicated by the
higher average performance in Fig.2 with model sizes of 64
and 32), and there is no apparent relationship between the
network’s modularity and the number of tasks. However, as
the model size decreases and the units available for computa-
tion correspondingly diminish, the network’s capacity drops to
a level where it struggles to support multitasking learning (as
shown by the lower average performance in Fig.2 with model
sizes of 25 and 16). In these cases, modularity and the num-
ber of tasks exhibit a significant positive relationship. Particu-
larly notable is the trajectory of the blue curve in Fig. 2, which
corresponds to a task number of three. While this curve inter-
twines with others at a model size of 64, it distinctly diverges
and drops below the others when the model size is reduced to
16, creating a significant margin.

This phenomenon suggests that under the constraint of
limited computational units, models spontaneously develop
highly modular structures to adapt to the demands of multi-
tasking, which potentially allows for the efficient reuse of lim-
ited neural circuits, providing a greater survival advantage.

Evolving networks
To model the learning process in an evolving network, we
first trained RNNs featuring 84 hidden nodes devoid of ini-
tial synapses, as illustrated by the add conn curves in Figure
3. Synaptic connections were incrementally introduced at a

rate of 10 per 500 batches, achieving a sparse topology of
800 connections by training’s end. For comparative purposes,
we also examined RNNs of identical scale but with 800 pre-
formed connections, detailed in the fix conn curves of Fig.3.

Figure 3: (A) Models that grow sequentially show higher mod-
ularity across all wiring rules. (B) Fixed models display similar
performance curves. (C) Growing models are more sensitive
to the degree of modularity in terms of performance. Dark
lines represent the mean of 10 runs, while light areas indicate
the standard error.

All connections are established according to probabilistic
wiring rules. ’Distance’ dictates that the connection probabil-
ity is proportional to the negative power of the Euclidean dis-
tance between two nodes, utilizing a distance matrix derived
from human cortical data. ’Random’ ensures uniform distribu-
tion of connections. ’Mixture’ denotes a hybrid approach that
combines these two rules.

Discussion
In our study, we produce a novel explanation that links the
emergence of modularization in neural network structures to
functional demands and dynamic network growth. By demon-
strating that modularity emerges as a strategic adaptation to
multitasking in constrained environments, our research con-
tributes novel insights into the interplay between the struc-
ture and function of brain networks. It posits that functional
requirements reciprocally influence structural configurations,
whereas the conventional paradigm, which typically regards
structural attributes as the fundamental scaffold for functional
capacities. The experiments on evolving networks assumed
that all synapses were dynamically formed during the task-
learning process. This setup universally induced a higher
level of modularity and a pronounced performance disparity
associated with the degree of modularity. Such findings may
partly reveal the brain’s propensity for high sparsity and mod-
ularity, as well as significant individual differences, under the
costly constraints of synaptic growth. Moving forward, future
research should explore how these principles can be applied
more broadly across biological and artificial systems, enrich-



ing our understanding of neural network evolution and poten-
tially informing the development of more sophisticated models
with limited computational resources.
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