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Abstract

Discoveries of functional cell types, exemplified by the
cataloging of spatial cells in the hippocampal formation,
are heralded as scientific breakthroughs. We question
whether the identification of cell types based on human
intuitions has scientific merit and suggest that “spatial
cells” may arise in non-spatial computations of sufficient
complexity. We show that deep neural networks (DNNs)
for object recognition, which lack spatial grounding, con-
tain numerous units resembling place, border, and head-
direction cells. Strikingly, even untrained DNNs with ran-
domized weights contained such units and support de-
coding of spatial information. Moreover, when these
“spatial” units are excluded, spatial information can be
decoded from the remaining DNN units, which highlights
the superfluousness of cell types to spatial cognition.
Now that large-scale simulations are feasible, the com-
plexity of the brain should be respected and intuitive no-
tions of cell type, which can be misleading and arise in
any complex network, should be relegated to history.
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Introduction

Spatial cells in the hippocampal formation are traditionally
regarded to form a cognitive map that facilitates our spatial
abilities. However, criteria for classifying these cells, includ-
ing place, head-direction, and border cells (Moser, Kropff, &
Moser, 2008) were subjectively determined by firing patterns
that piqued neuroscientists’ interest, and most cells in empiri-
cal data do not perfectly match idealized “cell types”. Compu-
tational models have demonstrated that spatial firing patterns
can emerge from factors unrelated to space, such as a con-
straint for sparseness (Franzius, Sprekeler, & Wiskott, 2007).
Here, we question the presumed privileged role of spatial cells
and propose that they may be inevitable by-products of gen-
eral computational mechanisms rather than the cornerstone
of spatial cognition. To test this, we explored the role of spa-
tial cell-like representations in spatial cognition in deep neural
networks (DNNs) optimized for object recognition as an exam-
ple of general information-processing systems without spatial
grounding. We simulate a free-foraging agent in a virtual envi-
ronment where DNNs process first-person visual scenes, and
analyzed the network units’ activity and assessed their spatial
knowledge. Specifically, we trained linear regression models
to decode spatial variables relevant to navigation, including lo-
cation, heading direction, and distance to border, across DNN
layers. We found that spatial variables can be decoded from
both trained and untrained DNNs (random weights) at mul-
tiple levels of processing. Furthermore, many DNN units fit
the criteria for place, head-direction, and border cells. No-
tably, lesioning these units had minimal impact on decoding
performance, suggesting individual spatial-cell types do not
play a privileged role, whereby spatial knowledge is distributed
across the population. Our work shows how general compu-
tational systems like the brain can appear to have domain-

specific representations (spatial) even when they are general,
and our subjective top-down perceptions of importance (cell
types) must be rigorously tested and potentially revised to
make progress to understanding the driving neural mecha-
nisms for cognition.

Method

A three-dimensional virtual space is created to resemble a re-
alistic laboratory environment with a variety of visual features.
An agent moves randomly in a two-dimensional plane within
the three-dimensional laboratory, like how an animal explores
an enclosure, and processes first-person views of the environ-
ment (Fig. 1A). We define spatial knowledge of the agent with
four values. The agent’s location is denoted by the Cartesian
coordinates #y,,. The agent’s heading direction is denoted by
the angle ¢,. The distance between the agent and the nearest
wall is 7, (Fig. 1B). Individual views are processed by DNNs
non-sequentially. We train linear regression models on vari-
ous layers in these networks to assess spatial knowledge over
levels of processing (Fig. 1C).
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Figure 1: (A-C) Assessing spatial knowledge in non-spatial
perception systems using a linear decoding approach in a vir-
tual environment.

Results

To demonstrate how spatial knowledge can arise from com-
plex computational systems irrespective of their architec-
tural variations or training states, we conducted an investi-
gation involving deep convolutional neural networks includ-
ing (DCNN) including VGG-16 (Simonyan & Zisserman, 2015)
and ResNet-50 (He, Zhang, Ren, & Sun, 2016) and Vision
Transformers (ViT; (Dosovitskiy et al., 2020)). These mod-
els were evaluated both in their pre-trained form, trained on
real images, and in an untrained state with randomly initial-
ized parameters. For clarity, we present results on the penul-



timate layer representation and uniformly sampled 30% of all
locations and their views for training the decoder and tested
on the left out locations and views. Our results, as depicted
in Fig. 2A, reveal that all models exhibit lower errors than
the established baselines (decoding randomly or decoding
the center). We also observed the same patterns of results
across different model layers. Notably, this phenomenon per-
sisted even in the case of untrained networks, especially in an
untrained ViT—comprising nothing more than a hierarchy of
fully-connected layers (i.e., self-attention) and non-linear op-
erations.

How is it possible that non-spatial perception models con-
tain such substantial spatial information about the external
environment? The common view in the field assumes that
cells exhibiting spatial firing profiles play a pivotal role in shap-
ing spatial cognition, as they intuitively seem useful for spa-
tial tasks and navigation. Are spatial cells responsible for
the effective decoding of spatial information in our perception
model?

To determine if the model’'s spatial knowledge is primarily
supported by spatially-tuned units like those found in the brain,
we classified every hidden unit in each model based on crite-
ria used to identify spatial cells in neuroscience for place cells
(Tanni, De Cothi, & Barry, 2022), head-direction cells (Banino
et al., 2018), and border cells (Banino et al., 2018), respec-
tively. We found many units in the non-spatial models that sat-
isfied the criteria of place, head-direction, and border cells and
show mixed selectivity. We selected example units from one
model (VGG-16) and plotted their spatial activation patterns in
the two-dimensional virtual space (irrespective of direction),
and their direction selectivity in polar plots (Fig., 2B-E).

Further, we test whether spatial cells have a special role
in spatial cognition by performing a systematic lesion analy-
sis. First, we scored and ranked each unit classified as place,
head-direction, and border units. We then re-trained linear de-
coders without the top n units of a specific cell type and eval-
uated the model’s spatial knowledge. We repeated this pro-
cedure with a progressively higher lesion ratio. We show that
lesioning spatial units in the models that scored highest on
each of the corresponding criteria (place field activity, number
of fields, directional tuning, and border tuning), had minimal
effect on decoding performance even with a large proportion
of the highest ranked spatial units being lesioned (Fig. 2F,
top). We also randomly lesioned the same number of spatial
units of each criterion (Fig. 2F, bottom) and observed a sim-
ilar pattern of results across four lesion scenarios, meaning
that the impact of lesioning highly-tuned spatial units was no
less detrimental to spatial cognition than lesioning a random
selection of units.

Conclusion

“Spatial cells” are traditionally viewed to play a pivotal role
in spatial cognition. Here, we demonstrate that even deep
neural networks of object recognition possess unit represen-
tations that satisfy the criteria for place, head-direction and

border cells, and our lesion analysis showed these “spatial
cells” do not play a special role in spatial cognition. In contrast
to the traditional view of a dedicated spatial neural system, we
propose that spatial cell-like representations inevitably arise
in non-spatial, general information processing systems like
the brain. Our findings indicate that the widely utilized top-
down approach in neuroscience for identifying interpretable
cells warrants re-examination, as it can often produce results
that simply align with preconceived expectations without ad-
vancing the field.
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Figure 2: (A) Spatial knowledge can be decoded across
trained and untrained deep neural networks irrespective of
architectures; (B) Place cells; (C) Head-direction cells; (D)
Border cells; (E) Place-direction cells; (F) Decoding of spa-
tial knowledge is robust to spatial cell lesions.
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