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Abstract
The human ventral stream is equipped with recurrent con-
nectivity allowing it to deal with the noise and uncertainty
of visual inputs. Including recurrence in Deep Neural Net-
works (DNNs) is a promising way of modelling this non-
feedforward connectivity. However, just like the role of
recurrent processing in the brain remains elusive, it is
unclear how making DNNs recurrent makes them more
human-like. Here, we put to the test a wide range of DNN
models equipped with various recurrent connections. We
compared them to human behaviour facing challenging
object recognition, and found recurrent model perfor-
mance and consistency with humans to be mediated by
size. Moreover, we found recurrent DNN confusion matri-
ces to be less similar to that of humans than feedforward
ones. These findings give perspective on the implemen-
tation of recurrence and the benchmarks used to assess
it.
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Introduction
Recurrent processing in the ventral stream allows to deal with
the computational difficulty of solving real-world object recog-
nition. Recurrence dynamically processes information, and is
especially implicated in the challenging scenarios of recogni-
tion, when sensory inputs are incomplete or otherwise am-
biguous. In line with this, it has been shown that includ-
ing recurrent connections in the architecture of DNNs made
them more resilient to visually challenging conditions (Loke
et al., 2022; Thorat, Aldegheri, & Kietzmann, 2021; Sörensen,
Bohté, de Jong, Slagter, & Scholte, 2023). Simultaneously,
recurrent DNNs have been shown to develop more brain-
like representations than feedforward ones (Kar, Kubilius,
Schmidt, Issa, & DiCarlo, 2019; Kietzmann et al., 2019).

While it is agreed that recurrence serves the resolution of
complex visual inputs, there remains much to learn about the
representational details carried out by recurrent signals. This
is due in part to the high number of existing recurrent connec-
tions to investigate, and in part to the virtually infinite num-
ber of possible challenges that these connections could be

involved with. There is a wealth of perceptual phenomena
potentially explained by different types of recurrence. In this
study, we ask whether we can use DNNs to distinguish be-
tween these different types of recurrent processing. We bring
together models from the CORnet (Kubilius et al., 2018) and
B (Spoerer, McClure, & Kriegeskorte, 2017) architectures with
variations of lateral and feedback connectivity, and try them
against human participants on a challenging object recogni-
tion task. We also include large, feedforward-only VGG mod-
els as controls for the influence of size in task performance
(Simonyan & Zisserman, 2015).

We found no task-specific dissociation between types of
recurrence. Furthermore, we observed recurrence to not
change information processing in a different way than model
size did. Finally, we report a decrease in confusion matrix
correlation with humans for recurrent models as compared to
feedforward ones.

Table 1: Models used in the study.

Model Nb. parameters Recurrence
C (CORnet Z) 1.5m /
C V1-V1 1.6m Lateral V1-V1
C IT-IT 1.6m Lateral IT-IT
CL (CORnet RT) 4.7m Lateral
CT 11.5m Top-down
CLT 11.5m Lateral + top-down
CS (CORnet S) 52.9m Lateral + skip
B 8.3m /
BL 17.2m Lateral
BT 12.6m Top-down
BLT 21.5m Lateral + top-down
VGG11 9.4m /
VGG16 134.3m /

Methods
Stimulus set & task Images of objects from 8 categories
were chosen from online databases (Lin et al., 2014; Zhou
et al., 2018). 16 different visual manipulations were applied



onto every image, each consisting in a variations of clutter,
occlusion or phase scrambling. These three classes of ma-
nipulations are known to trigger recurrent processing (Seijdel
et al., 2021; Rajaei, Mohsenzadeh, Ebrahimpour, & Khaligh-
Razavi, 2019; Tang et al., 2018). Both human participants
and DNN models were presented with a categorisation task
on the 8 chosen object categories, which included backward
masking for humans.

DNN modelling We investigated thirteen distinct DNN mod-
els, chosen to represent a range of complexities, from basic
feedforward structures to more sophisticated recurrent net-
works. Within the CORnet models (hereafter renamed C), we
included the foundational C Z, C RT (hereafter called C and
CL, respectively) and C S, as well as the custom-built C V1-
V1, C IT-IT, CT and CLT. We included all four B models, as
well as VGG11 and VGG16 (see Table 1 for more details).

Results
Model performance

Average accuracy varied significantly across models, with
VGG16 significantly higher than all others (p < 0.001, Tukey
test, see Figure 1). While more recurrent models seem to per-
form higher than their baseline counterparts, this improvement
is largely explained by the increase in size brought by adding
recurrence, as shown by the large correlation between aver-
age accuracy and model size (Pearson’s correlation r = 0.74,
p = 0.003).

Figure 1: Model performance correlates with size. Left:
grand average performance per model. Error bars represent
95% confidence intervals. Right: model average accuracy per
model size, in number of parameters.

Task consistency

We then checked which models were more consistent with
human participants by correlating patterns of accuracy across
our 16 visual conditions. We found an overall high correlation
(> 0.65), indicating an agreement on task difficulty (see Fig-
ure 2). While recurrent models correlate more than their feed-
forward counterparts, VGG16 surpasses all with a correlation

of 0.85. Generally, model size seems to drive the consis-
tency of models with humans (Pearson’s correlation r = 0.83,
p = 3.9e− 04), in a way comparable to how it drives perfor-
mance.

Figure 2: Recurrence helps consistency and impairs con-
fusion matrix correlation. Pearson’s R correlation scores
between models and humans in task difficulty (top) and con-
fusion matrix (bottom, error bars represent 95% confidence
intervals).

Confusion matrices

We finally looked at confusion matrices to compare category-
level representations between humans and models. Our re-
sults indicate that recurrence in models decreases the corre-
lation with humans, with baseline feedforward models outper-
forming recurrent ones within the B and C families (see Figure
2). The feedforward VGG11 and VGG16, on the other hand,
follow a similar trend as in previous analyses and outperform
all others.

Conclusion

Our findings highlight the limitations of recurrence as imple-
mented in our models. On the one hand, performance and
task consistency analyses suggest that recurrent DNNs are
equally good as their size-matched feedforward unwrapped
equivalent. On the other hand, confusion matrix compar-
isons highlight a discrepancy in the information processing
strategies brought by recurrent connectivity compared to hu-
mans. This is especially striking when considering that recur-
rent models are shown to better match patterns of activity in
the ventral stream, which suggests that recurrent DNNs could
at the same time be better models of the human brain and
worse models of human behaviour than feedforward ones.
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