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Abstract

In our study, we analyzed over 150 state-of-the-art vision
models using explainability tools to see how they process
high- and low-frequency features. We introduce a metric
based on Attribution methods to quantify the models’
dependence on high-frequency features. We found
that more advanced models rely more on low-frequency
features. To advance our investigation, we assessed
whether more accurate models demonstrate increased
reliance on phase information, which is crucial for human
recognition. This was achieved by mixing the phase
components of images to evaluate the models’ object
recognition capabilities. The findings indicate that while
high-performing models are progressively depending
more on phase information, they substantially lag behind
human performance. Additionally, we show that models
that depend on low-frequency features tend to have a
shape bias, confirming a connection between frequency
reliance and perception bias.

Our analysis indicates that as models become
more performant, their use of phase information and
low-frequency features increases. However, a significant
gap remains compared to human capabilities, suggesting
opportunities for further enhancing model alignment
through frequency analysis.
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This work seeks to better understand the features learned
by Deep Neural Networks from a frequency perspective. We
specifically aim to address three issues: (i) the predominance
of high-frequency versus low-frequency features in DNNs, (ii)
the extent of phase information utilization in comparison to
human vision, and (iii) the influence of frequency analysis to
understand the shape-texture bias.

High Frequency Reliance We first ask: do models
use high or low-frequency features to drive decisions?
To answer this, we will use attribution methods, more
specifically, Saliency [16], Integrated Gradients [13], and
SmoothGrad [11]. These methods take given image = &€
R%*" and its prediction f(x) as inputs and return a heatmap
revealing the pixels considered important for the model, i.e.,
the areas on which the important features rely. We study these
important features from a frequency point of view, to know
on average if the model uses low or high-frequency features.
More formally, an attribution method [16, 2, 1, 11, 13, 10]
returns a heatmap v € R¥*"". We respectively denote F
and F ! the 2-D Discrete Fourier Transform (DFT) on some
image x and its inverse, such that = = F~1(F(z)). With

x) = F (rie"¥2) ) =F (rye')
Figure 1: Phase Switching Experiment: A visual
representation of the methodology used to assess the impact
of phase information on model performance. This figure
illustrates the process of interchanging phase components
between images to evaluate the model’s reliance on phase
information.

z = F(x) € C”*" the centered Fourier spectrum (freq 0 at
the center), we denote the polar form of z = rel®. Finally,
we denote F(x)(i,j) € C the component 7,j of the matrix
z of the Fourier spectrum. The metric that we propose
consists of calculating the average of the Fourier spectrum
of the heatmaps given by an attribution method, to have, on
average, the type of frequencies that the model uses. It then
remains to calculate the energy allocated by the model in high
and low frequencies. We recall that we obtain the energy for
a frequency band w named E(w) for the frequency w via
azimuthal integration:

27
E(@;v)= [ IIF(7)(w- cos(0),w-sin(®))[[2d0 (1)
with w e {1,...,h/2—-1} (2

Subsequently, we introduce our normalized energy metric:

= E(w;7)
E(wv)=c—F"7= (©)
Lo E(w';7)
This enables us to present our metric for measuring high
frequencies, essentially the energy of a frequency weighted

by the frequency value itself, across the normalized spectrum.
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Figure 2: High-Frequency Energy (avg. A(+y) score)
vs. ImageNet Accuracy: This graph showcase the inverse
relationship between model accuracy and reliance on high-
frequency features. Notably, transformer models seems
to demonstrate a pronounced preference for low-frequency
features over convolutional networks.

This approach ensures that signals with higher energy are
not disproportionately penalized. This score, on average,
indicates the rate of high-frequency features utilized by a given
model f: o
A() =) E(w;r) w 4)
w

We employ the Timm library [15] to assess over 150
state-of-the-art models. The outcomes, as illustrated in
Figure 2, indicate that the more accurate on ImageNet the
models are, the more they depend on low-frequency features.
Interestingly, a slight trend towards superior performance is
observed in transformer models, which, at equal accuracy
levels, appear to utilize fewer high-frequency components.

We conclude that performant models use the more central
portion of the Fourier spectrum. However, we still must
ask: do they, like humans, rely on low-frequency phase
information [8, 14, 9], or do they leverage another type of
information?
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Figure 3: Phase mixing results. The more performant
models are, the more they rely on phase information. It is also
observed that transformer-type models seem to rely more on
phase in general compared to convnets.

Phase mixup experiment. We now have a tendency:
more performant models increasingly use low frequencies.
Moreover, Oppenheim & Lim [8] showed that the Fourier
phase spectrum is more important to perception of natural
images than the magnitude data, but can we say the same
about artificial models? We set up a test to verify if models
that use lower frequencies also use more phase information.

In our study, we applied the same models to a subset of
5000 images from the ImageNet test set for which the phase
was mixed, as seen in 1. Subsequently, we evaluated the
accuracy of the models (lpwl,wlz(f($]) = f(}), in Fig.3)
on these modified images, with the results also presented
in Fig.3. Our findings reveal two key insights: (1) as a
model’s accuracy enhances, it increasingly relies on low-
frequency features and (2) there’s a notable shift towards
greater utilization of phase information. This indicates that
as models get better, they begin to focus on low-frequency
phases, aligning more closely with some results in human
perception [8].
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Figure 4: Correlation between phase mixing score and
shape bias on [4].

Connection with Shape vs. Texture Bias. Current studies
reveal a preference for texture over shape in Al models [4,
3, 5, 6, 7] and a link between frequency analysis and shape
bias [12]. Here we investigate if shape-biased models also
lean on lower frequency features. We examined 150 models
using the Cue-Conflict dataset [4], where images blend
shapes and textures from different classes. Results presented
in Figure 4 highlight a significant relationship between the
shape bias of models and their performance in our phase-
mixing experiment. This suggests that analyzing models
based on frequency can provide a fresh viewpoint on the
texture bias of modern DNN.

Conclusion. Our study reveals that while accurate models
lean towards low-frequency features and are using more
phase information, they still lag significantly behind humans
in simple phase-switching tasks — achieving only about 50%
of human performance at best. This underscores substantial
potential for improvement in vision model development.
Employing frequency analysis could offer valuable insights
into ongoing question like shape versus texture.
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