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Abstract
Current models of cognitive control frame its allocation
as a process of expected utility maximization. The ben-
efits of a candidate action are weighed against the costs
of that control allocation (e.g. opportunity costs). Re-
cent theorizing has found that it is normative to account
for the value of learning when determining control alloca-
tion. Here, we sought to test whether learning expecta-
tions could explain people’s initial control allocation in a
standard dot-motion perceptual task. We found that par-
ticipants’ initial skill level and learning rate in a first block
were able to predict their initial willingness to accumu-
late evidence in a second block, interpreted as a greater
control allocation for the task. Our findings support the
hypothesis that agents consider learnability when allocat-
ing cognitive control.

Keywords: learning; decision making; cognitive control; drift
diffusion model; sequential sampling model

Introduction
Typing technique falls into two categories: the easy way (hunt-
ing and pecking), and the hard way (touch typing). Why would
anyone ever take the hard way? Because, with enough prac-
tice, the hard way will lead to faster typing (Logan, Ulrich, &
Lindsey, 2016), a better result in the long term. Several con-
siderations underlie this form of intertemporal choice we face
throughout our lives. How long into the future will one be typ-
ing, much will one get paid for it, and how quickly can one
gain proficiency? Driving these questions are parameters that
shape a hidden dynamical dimension of the speed-accuracy
tradeoff: more time on task (deliberation time in interrogation
paradigms) may be suboptimal in the short term, but optimal
in the long term because it allows agents to reach proficiency
faster (Ması́s, Musslick, & Cohen, 2021; Ması́s, Chapman,
Rhee, Cox, & Saxe, 2023; Tsetsos, 2023).

The strategic nature of the choice of how to manage this
dynamical speed-accuracy tradeoff suggests there may be
control mechanisms that manage such decisions. It has
been stipulated that cognitive control allocation adjudicates
between motivational factors (e.g. reward) by allocating con-
trol according to its expected value (Kool, McGuire, Rosen, &
Botvinick, 2010; Kurzban, Duckworth, Kable, & Myers, 2013;
Shenhav, Botvinick, & Cohen, 2013). Part of that value is near
term rewards that would come from immediate performance,
the component of reward that is considered in most models
(Musslick, Shenhav, Botvinick, & Cohen, 2015; Musslick et
al., 2017; Verguts, Vassena, & Silvetti, 2015; Leng, Yee, Ritz,
& Shenhav, 2021). What has been less fully considered is
the potential value of increases in future reward that would
come from improvements in performance through learning.
The most direct test of the allocation of cognitive control in
the service of learning comes from a study in which rats were
found to strategically manage their learning, trading current re-
wards for faster learning (Ması́s et al., 2023). However, to our
knowledge, a similar test has yet to be carried out in humans.
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Figure 1: EVCL-LDDM. Model is composed of standard de-
cision making and learning components (LDDM, b & c) with
a threshold policy determined by a component that evaluates
the expected value of control for learning (EVCL, panel a). (c)
A recurrent linear neural network implements a standard drift
diffusion model (DDM). (b) The network undergoes error cor-
rective learning during which adjusting the network’s percep-
tual weights is equivalent to adjusting the internal (attentional)
component of the drift rate of a DDM. (a) A threshold policy
controls the evidence accumulation threshold across trials. If
that threshold is set to maximize cumulative reward over some
time horizon, it is equivalent to an optimal expected value of
control for learning (EVCL) model that takes account of the
effects of learning, and uses the threshold as the control vari-
able. (d) Optimal threshold across learning rate and initial skill
level for a greedy policy maximizing current reward rate, and
(e) a policy maximizing total cumulative reward (EVCL).

Model & Results

Model and Model Predictions

EVCL-LDDM. We combined a recent sequential sampling
model, the learning drift-diffusion model (LDDM; Ması́s et al.,
2023), with another recent model that estimaes the expected
value of control for learning (EVCL model; Ması́s et al., 2021)
(Fig. 1a-c). LDDM is a process model that imbues the stan-
dard drift-diffusion model (DDM) with the ability to learn based
on experience. In LDDM, longer deliberation times lead to
faster learning because feedback signals are more informative
when more stimulus evidence is available to interpret them.
As such, slower deliberation can actually be normative. EVCL
provides a metacognitive objective to direct LDDM’s learning
by proposing that agents consider their potential learning tra-
jectory when deciding how much control to allocate to a task.

Predictions. EVCL-LDDM predicts that when maximizing
total cumulative reward (EVCL policy), learning expectations
(initial skill level and learning rate) determine optimal cogni-
tive control allocation, implemented by adjusting the evidence
threshold or, effectively, average deliberation times (Bogacz,



Brown, Moehlis, Holmes, & Cohen, 2006). Specifically, con-
trol should increase with initial skill level and learning rate, and
decrease with their interaction (the larger the initial skill level,
the smaller the effect of learning rate) (Fig. 1e). In contrast,
when maximizing current reward rate (greedy policy), only ini-
tial skill level determines optimal control allocation (Fig. 1d).

Study Design and Results

Participants. We collected data using Prolific
(prolific.co) from 197 participants compensated
$4.80USD (∼$10.77 an hour) who provided written in-
formed consent in accordance with the relevant Institutional
Review Board. After basic engagement exclusions, 159
participants remained.

Study Design. EVCL-LDDM predicts (see Fig. 1) that par-
ticipants’ learning expectations (initial skill level and learning
rate) will determine their allocation of control (optimal thresh-
old and therefore also decision times) (Fig. 1e). The model
determines optimal thresholds through an unrealistic offline
optimization procedure. Instead, people may, after some ex-
perience with a task, generate a prior on their learning ex-
pectations and use that prior to estimate their optimal control
allocation when faced with a sufficiently similar task again.

To test these predictions, we used a classic perceptual de-
cision making task, the random dot kinematogram, with diffi-
cult but learnable motion coherence conditions (5%, 10% &
15% based on a pilot study not shown). The study was com-
posed of an initial inducement period (block 1, 200 trials) dur-
ing which participants generated their learning expectations,
followed by a measurement period (first 25 of 200 trials of
block 2) where participants’ control allocation was measured
as a function of those learning expectations.

Analysis. We measured participants’ learning expectations
via an HDDM regression (Wiecki, Sofer, & Frank, 2013) of drift
rate over trials during block 1 (Fig. 2e) where initial skill level
and learning rate were operationalized as the intercept (ini-
tial drift rate) and regression coefficient of trial (change in drift
rate) respectively. We then tested whether learning expecta-
tions in block 1 determined initial control allocation in block
2 through an HDDM regression of threshold (Fig. 2f) and a
linear mixed effects regression of decision time (Fig. 2g).

Results. First, we qualitatively fit EVCL-LDDM to average
performance in block 1 (Fig. 2a, c), and used those parame-
ters to generate optimal decision times based on a greedy pol-
icy and one that considers learning (EVCL). The EVCL learn-
ing policy qualitatively matched initial decision times in block
2 (Fig. 2b, d), suggesting that on average participants’ initial
control allocation reflected their learning expectations.

Next, we obtained individual participant estimates on initial
drift rate (initial skill level), and change in drift rate (learning
rate) with a DDM regression of drift rate over trials fit on per-
formance in block 1. Group-level posteriors showed that par-
ticipants did learn throughout block 1 (Fig. 2e). We then used
individual participant estimates to regress initial threshold in
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Figure 2: Learning expectations shape initial control allo-
cation. (a) Mean error rate (ER) and decision time (DT) (25
trial bins, 95% cI) by coherence condition (5%, n = 58; 10%, n
= 50; 15%, n = 51). (b) mean DT during first 25 trials of block
2, separated by motion coherence condition in block 1. (c) ER
and DT for qualitative model fits to 5, 10 and 15% coherence
conditions. (d) Optimal DTs using qualitative parameter fits to
block 1 motion coherence data for a greedy policy (left panel)
and EVCL policy (right panel). (e) Initial drift rate (initial skill
level) operationalized as the intercept of drift rate. Change in
drift rate (learning rate) operationalized as the coefficient of
trial for drift rate (slope of drift rate). (f, g) Coefficients for ini-
tial drift rate (initial skill level; p < 0.05 in g), change in drift
rate (learning rate; p < 0.05 in g), initial drift rate×change in
drift rate (p = 0.1 in g), and inferred final threshold (p< 0.05
in g). 89% high-density intervals shown in f. Pink arrows indi-
cate model predictions.

the first 25 trials of block 2 as a function of initial drift rate,
change in drift rate and their interaction. We included the in-
ferred final threshold from block 1 to account for the predicted
autocorrelation between threshold across blocks. We found
that initial threshold depended on initial drift rate, change in
drift rate and their interaction, as predicted by our model (Fig.
2f). Because drift rate was 0 during block 2 (coherence of 0%),
decision time should be directly proportional to threshold, and
thus serve as an additional check of our predictions. A linear
mixed effects regression on decision time found significant ef-
fects for initial drift rate and change in drift rate, and a trend
for their interaction, as predicted by our model (Fig. 2g).
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