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Abstract
Understanding how recurrent neural networks (RNNs)
learn to perform complex tasks through interaction with
an environment, i.e. as agents or controllers, is important
for both artificial intelligence and neuroscience. A lot of
previous work has analyzed RNNs trained using super-
vised learning, and relatively less attention has been paid
to reinforcement learning (RL) in the context of recurrent
architectures and to their learning dynamics. Here, we
take a step towards addressing this gap by thoroughly
analyzing the learning dynamics of RNN-based artificial
agents trained by reinforcement to solve a classic nonlin-
ear continuous control problem – the Inverted Pendulum.
Our framework provides key intuitions on the evolution of
the control policy, neural dynamics, representational ge-
ometry, and memory in RNN-based agents.
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Introduction
Recurrent Neural Networks (RNNs) are versatile and widely
used models of neural activity and behavior in Neuroscience
(Rajan, Harvey, & Tank, 2016; Barak, 2017). Most current re-
search has focused on analyzing the internal dynamics in fully
trained networks (Rajan & Abbott, 2006; Vyas, Golub, Sus-
sillo, & Shenoy, 2020). However, how such dynamics emerge
through the process of learning and how changes in learn-
ing dynamics affect task performance are relatively less well
explored. In recent work (Marschall & Savin, 2023; Hocker,
Constantinople, & Savin, 2024; Driscoll, Shenoy, & Sussillo,
2022), early progress has been made towards understanding
how the attractor landscape of RNNs changes during learning
in the supervised learning setting. Here we consider the less
studied setting of reinforcement learning (RL) to train RNN
agents or controllers, where the interaction between an arti-
ficial agent and an external environment shapes its internal
dynamics and behavioral policy throughout learning. We pro-
vide a thorough analysis of the inverted pendulum problem as
a first step, developing a flexible analysis framework that can
be applied to probe the learning dynamics and resulting be-
haviors of neural network-based agents in more complex or
ethologically relevant RL tasks.

Methods
We trained RNN agents to balance an Inverted Pendulum in
the upright position by applying appropriate torque (Fig. 1a)
in the OpenAI Gym Pendulum environment (Brockman et al.,
2016) using policy gradients (Ni, Eysenbach, & Salakhutdinov,

2021). Agents consisted of vanilla RNNs followed by 1-layer
feedforward policy and value networks (all 64 units wide, tanh
nonlinearity). We considered both partially observable (PO)
agents which only received the angular position θ as inputs,
and fully observable (FO) agents, which additionally received
the angular velocity θ̇. Training was performed for 100 gradi-
ent updates, with 1024 simulation steps per update.

The update equation for the RNN is ht = F(ht−1,xt) =
tanh(Whht−1 +Wxxt +b), where ht is its hidden state, Wh
the recurrent weight matrix, xt the input vector, Wx the
input-to-hidden weight matrix, and b a bias term (Sussillo
& Barak, 2013). Linearizing this around a an expansion
point (he,xe), we obtain a linear dynamical system approx-
imation: ht ≈ F (he,xe)+ Jrec|(he,xe) ∆ht−1 + Jinp

∣∣
(he,xe)

∆xt ,
where ∆ht−1 = ht−1 −he represents the linearized system’s
state, ∆xt = xt −xe denotes the input, Jrec is the recur-
rence Jacobian matrix, and Jinp is the input Jacobian matrix.
Jrec|(0,0) = Wh and Jinp

∣∣
(0,0) = Wx. Previous studies have

investigated the eigenvalues and eigenvectors of the recur-
rence matrix and recurrence Jacobian to understand the im-
pact of connectivity on network dynamics (Rajan & Abbott,
2006; Singh, van Breugel, Rao, & Brunton, 2023). In particu-
lar, (Maheswaranathan, Williams, Golub, Ganguli, & Sussillo,
2019) derive the stimulus integration timescale τi for a sta-
ble eigenvalue λi (i.e., |λi| ≤ 1) by considering the discrete-
time iteration hi(t) = λt

ihi(0), which governs stimulus integra-
tion along the direction of the eigenvector vi corresponding to
λi and then compare this with the equivalent continuous-time
equation hi(t) = hi(0)e−t/τi to get τi = |(1/ ln |λi|)|. We use
1000 timesteps (5 episodes) to generate estimates of τi.

Results
Training gradually sharpens the policy decision boundaries
between positive and negative torques, with sharper bound-
aries observed for the FO environment (Fig. 1b). In the PO
case, training prunes the recurrent dynamics into a ring to effi-
ciently represent the circular state variable θ (Fig. 1c). During
training, a stable fixed point (FP), associated with the upright
pendulum, emerges earlier, followed by the appearance of an
unstable FP for the free-hanging pendulum state. The stable
FP’s proximity to the goal location is significantly correlated
with the reward obtained by the controller (Fig. 1d). Stimulus
integration exhibits distinct regimes in its evolution (Fig. 1e).

Future work
We will investigate more complex and biologically inspired en-
vironments, with longer evidence integration memory require-
ments, and complex sequential decision making and planning.
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Figure 1: Evolution of the control policy, recurrent dynamics, geometry, and memory of recurrent neural controllers in
the Pendulum task. (a) Schematic representation of the Pendulum, with different state spaces in fully observable (FO) and
partially observable (PO) environments. (b) Policy evolution of the recurrent neural controller, visualized as a function of θ

and θ̇. The top panel depicts the PO environment; the bottom, the FO environment. For both PO and FO environments, training
sharpens the policy landscape, distinguishing between positive and negative torques more clearly. In the FO environment, the
controller seems to use the extra θ̇ information to learn a more precise control policy, as indicated by the near-zero torques at high
θ̇ values. (c) Recurrent dynamics in the PO environment, shown in the top two principal components, colored by θ at different
training points. Training prunes recurrent dynamics into a ring to efficiently represent the circular variable θ. During training,
the stable FP moves across the state space, gradually approaching the goal location where θ = 0 (or equivalently, θ = 2π).
Meanwhile, an unstable FP, representing the free-hanging pendulum, emerges later in the training process and converges to the
coordinates corresponding to the vertically-down pendulum position. Together, these FPs help the agent represent both its goal
and key aspects of environmental physics within its recurrent dynamics. Note that the controller’s stable FP corresponds to the
unstable FP of the physical system, and vice versa. (d) [Left] Trajectory of the stable FP moving across the state space
in the PO environment, colored by 10-episode-average reward at the corresponding time point. Interestingly, how close the
FP is to its goal location seems to be correlated with reward. [Right] We quantify this trend over five seeds to find that indeed
the proximity of the FP to its final state is correlated with the episode reward-to-go (the difference between final reward
and episode reward at the corresponding time point. This demonstrates a statistically significant linear relationship between
reward-to-go and FP-goal location proximity, directly linking representational geometry to task performance. (e) Evolution of
top-5 stimulus integration times τi over training steps in the PO environment. Initially, we see an increase in τs, suggesting
that the agent is extending its period of information integration to gather more stimulus information. This increase is followed by
a decrease in τs, indicating a transition to more efficient memory usage that retains only task-relevant information in the shorter
timescale. This pattern, which we call “explore then compress” , reflects the balance between thorough information integration
during the exploration phase and a more focused, efficient retention of only task-relevant information in the compression phase.
The error bar indicates 99% confidence interval in the estimation of τ.
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