
 

Connectome predictive modeling of trait mindfulness 
 

Madelynn S. Park (madelynn@mit.edu) 
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology 

McGovern Institute for Brain Research, 43 Vassar Street 
Cambridge, MA, 02139 USA 

 

Isaac N. Treves (treves@mit.edu) 
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology 

McGovern Institute for Brain Research, 43 Vassar Street 
Cambridge, MA, 02139 USA 

 

Aaron Kucyi (aaron.kucyi@drexel.edu) 
Department of Psychological & Brain Sciences, Drexel University, 3141 Chestnut Street 

Philadelphia, PA 19104 USA 
 

Tammi R.A. Kral (tammi@hminnovations.org) 
Center for Healthy Minds, University of Wisconsin–Madison, 625 W Washington Avenue 

Madison, WI 53703 USA 
 

Simon B. Goldberg (sbgoldberg@wisc.edu) 
Center for Healthy Minds, University of Wisconsin–Madison, 625 W Washington Avenue 

Madison, WI 53703 USA 
Department of Counseling Psychology, University of Wisconsin–Madison, 1000 Bascom Mall, Room 335 

Madison, WI 53706 USA 
 

Richard J. Davidson (rjdavids@wisc.edu) 
Center for Healthy Minds, University of Wisconsin–Madison, 625 W Washington Avenue 

Madison, WI 53703 USA 
Department of Psychology, University of Wisconsin–Madison, 1202 W Johnson Street 

Madison, WI 53706 USA 
 

Melissa Rosenkranz (melissa.rosenkranz@wisc.edu) 
Center for Healthy Minds, University of Wisconsin–Madison, 625 W Washington Avenue 

Madison, WI 53703 USA 
Department of Psychiatry, University of Wisconsin–Madison, 6001 Research Park Boulevard 

Madison, WI 53719 USA 
 

Susan Whitfield-Gabrieli (s.whitfield-gabrieli@northeastern.edu) 
Department of Psychology, Northeastern University, 105 Forsyth Street #125 

Boston, MA 02115 USA 
 

John D.E. Gabrieli (gabrieli@mit.edu) 
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology 

McGovern Institute for Brain Research, 43 Vassar Street 
Cambridge, MA, 02139 USA 

 
 
 
 
 

 

 

 



 

Abstract: 

Trait mindfulness refers to one’s disposition or tendency 
to pay attention to experiences in a mindful way. Trait 
mindfulness has been robustly associated with positive 
mental health outcomes, but its neural underpinnings 
are poorly understood. To explore the neural networks 
associated with trait mindfulness and their relationship 
to different facets, we conducted a pre-registered 
connectome predictive modeling analysis in 367 adults 
across three sites. This is the largest study to date 
examining trait mindfulness using resting-state fMRI. We 
identified significant neural models for two mindfulness 
subscales, Acting with Awareness (AA) and Non-judging 
(NJ). These models involved notable connections within 
the fronto-parietal network (FPN), default mode network 
(DMN), and somatomotor network (SMN). We determined 
that the AA model generalized to one dataset, while the 
NJ model generalized to another dataset. Thus, our 
results suggest that whole-brain functional connections 
can be used as markers of trait mindfulness. 

Keywords: Trait mindfulness; resting-state fMRI; 
connectome; attention; predictive models; multi-site  

Introduction 

Trait mindfulness refers to one’s tendency to attend 
to experiences in a mindful way, and is often measured 
using self-report scales, such as the Five Facet 
Mindfulness Questionnaire (FFMQ) (Baer, Smith, & 
Allen, 2004). Greater trait mindfulness has been 
associated with positive mental health outcomes (Allen, 
Romate, & Rajkumar, 2021; Amundsen et al., 2020; 
Chu & Mak, 2020; Kong, Wang, & Zhao, 2014; Schutte 
& Malouff, 2011), and negatively associated with 
outcomes such as anxiety, stress, and negative affect 
(Carpenter et al., 2019; Coffey & Hartman, 2008; de 
Bruin, Zijlstra, & Bögels, 2014; Greco, Baer, & Smith, 
2011; Tomlinson et al., 2018; Treves et al., 2023). 
Moreover, neuroimaging of trait mindfulness can 
provide some insight into understanding mental health 
disorders (Zhuang et al., 2017).  

Prior correlational research between resting-state 
static functional connectivity (SFC) and trait 
mindfulness has revealed inconsistencies in the 
relationships between trait mindfulness and brain 
networks (Bilevicius, Smith, & Kornelsen, 2018; Doll et 
al., 2015; Harrison et al., 2019; Hunt et al., 2022; Kong 
et al., 2016; Li et al., 2022; Parkinson, Kornelsen, & 
Smith, 2019; Shaurya Prakash et al., 2013; Wang et al., 
2014), potentially due to fMRI methodological 
limitations and the multidimensional nature of 
mindfulness. Motivated by these discrepancies, this 
study aimed to investigate the functional neuroimaging 
basis of trait mindfulness.  

Method 

Training and Test Datasets 

Training Dataset: Wisconsin. Data from the 
University of Wisconsin-Madison Meditation Study 
(NCT02157766) comprised of 206 meditation-naïve 
participants who completed a 12 minute resting-state 
MRI scan (age M = 30.9, SD = 13.1 years, 85 male). 
Test Dataset: Stanford Science of Behavior Change 
Project. Data consisted of 82 meditation-naïve 
participants who completed an 8 minute resting-state 
MRI scan (age M = 23.6, SD = 4.9 years, 27 male) 
(https://scienceofbehaviorchange.org/projects/poldrack
-marsch/). Test Dataset: Leipzig Mind-Brain-Body. 
Data (open-source) consisted of 79 meditation-naïve 
participants (mode age range 20-25, 45 male) who 
completed four resting-state scans (Mendes et al., 
2019). 

Measures and Procedures 

Five Facet Mindfulness Questionnaire (FFMQ). The 
FFMQ consists of five facets: Acting with Awareness, 
Non-judging, Non-reactivity, Describing, and Observing 
(Baer et al., 2006; 2008). We used the scores of 
subscales, total FFMQ, and the total FFMQ scale 
without Observing, as it may show limited validity (Gu 
et al., 2016). We used Pearson’s correlations to assess 
relationships between subscales in the training dataset, 
and we conducted unpaired, heteroskedastic t-tests to 
compare total FFMQ scores between the datasets. 

Preprocessing and denoising run in the CONN 
Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 
2012). We extracted preprocessed BOLD time series 
and computed a matrix of FC values between all region 
pairs (i.e., connections, edges) based on the Fisher z-
transformed Pearson correlation coefficient of time 
series.  

Predictive modeling analysis. The Wisconsin sample 
was chosen for training as it is the largest (Poldrack, 
Huckins, & Varoquaux, 2020). Using leave-one-
participant-out cross-validation (LOOCV), we 
generated model-based predictions of the FFMQ and 
subscales for all participants, correlating FC edges with 
FFMQ scores at P < 0.01. Futher, we computed a single 
network strength (S) value and fitted a linear model 
(FFMQ = β*S + c) to evaluate predicted versus 
observed FFMQ scores. To assess significance, we 
compared true correlations with null values obtained 
through 1000 random permutations. We also controlled 
for head motion (framewise displacement, FD) and 
conducted 10-fold CV. As we trained seven models for 
each of the measures, we controlled for multiple 
comparisons using FDR-correction (Benjamini & 
Hochberg, 1995). Finally, we conducted additional 



 

predictive modeling (e.g. Elastic Net), which showed no 
improvements in generalization compared to CPM.  

Validation in test datasets. We applied the trained 
models to the Leipzig and Stanford datasets, averaging 
across runs and excluding data with FD > 0.15 mm.  

Results 

Neural features from the training dataset. The 
models predicting Acting with Awareness (AA-CPM) 
and Non-judging (NJ-CPM) scores showed positive 
correlations between overall network strength (positive 
- negative) and the respective subscale (AA: r(186) = 
.22; NJ: r(186) = .21), and had non-parametric ps of 
.017 and .025, respectively, which, when corrected for 
multiple comparisons, were both pFDR = .087. 

 

 

Figure 1: Prediction performance in the training datset. 
Predicted vs. observed values from LOOCV for AA (A) 

and NJ (C) subscales. Correlation coefficient 
compared to the distribution of null correlation 

coefficients for AA (B) and NJ (D). 

AA-CPM features. Masked edges from the AA model 
were analyzed. In the positive network (sets of pairwise 
connections that positively predicted mindfulness with 
increasing connectivity), notable connections involved 
the FPN with sensory networks and between the FPN-
DMN. The negative network (edges that negatively 
correlated with AA scores) involved connections within 
the SMN and between the SMN-VIS, involving auditory 
and DMN networks. NJ-CPM features. Masked edges 
from the NJ model were analyzed. In the positive 
network, DMN connections to the SMN and CO edges 
were most prevalent. The negative network was widely 
distributed, with many edges in the SMN network and 
between VIS-DMN.  

 

Figure 2: Edges included in AA model (A) and NJ 
model (B) of FFMQ according to the Shen atlas (Shen 

et al., 2013). Edges that positively predict subscale 
scores are in red; edges that negatively predict 

subscale scores are in blue. Node degree refers to the 
number of connections including that node (brain 
area). SMN: somatomotor network, CO: cingular-
opercular network, AUD: auditory network, DMN: 
default-mode network, VIS: visual network, FPN: 

frontoparietal network, SAL: salience network, SUB: 
subcortical network, VAN: ventral attention network, 

DAN: dorsal attention network. 

Testing performance of AA-CPM and NJ-CPM. 
When the AA-CPM model was applied to the Leipzig 
dataset, we found a significant positive association 
between predicted and observed scores (r(73) = .24, p 
= .037). However, there was no significant relationship 
between AA-CPM predictions and observed AA scores 
in the Stanford dataset (r(80) = .03, p = .80). When the 
NJ-CPM model was applied to the Leipzig dataset, we 
found no association between predicted and observed 
scores (r(73) = .17, p = .14). However, we found a 
positive relationship between NJ-CPM predictions and 
observed NJ scores in the Stanford dataset (r(80) = .28, 
p = .012). 

Conclusion 

While we did not find a generalizable model of total 
FFMQ scores that predicted overall trait mindfulness, 
we found that models of Acting with Awareness and 
Non-judging subscales generalized to the Leipzig 
dataset and Stanford dataset, respectively. The AA 
model found positive connectivity (relating to attention 
regulation (Mooneyham et al., 2016)), and SMN 
negative connectivity (implicated in mind-wandering 
(Mckeown et al., 2020; Vatansever et al., 2019)), 
whereas the NJ model implicated the DMN (related to 
rumination and self-referential processing (Raichle et 
al., 2001)). These findings provide neural support for a 
two-dimensional model of mindfulness, delineating 
awareness-cognitive and non-judgment-affective 
facets. 
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