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Abstract: 
The human brain has a remarkable ability in extracting 
and integrating relevant data for guiding actions and 
decisions. This capacity in part depends on working 
memory (WM), which maintains and manipulates task-
relevant information in the service of goal-directed 
behavior. Theories and experimental evidence suggest 
that the mnemonic mechanisms of WM functions 
probabilistically, implying its potential to form a joint 
distribution for integrating multiple working memory 
representations. Yet, it remains an open question 
whether this probabilistic operation underpins the WM 
process in constructing task representation for guiding 
decisions, especially in the presence of multiple WM 
inputs. Our study investigates whether WM integrates 
multifaceted information probabilistically or 
deterministically. We designed a novel task requiring 
subjects to make decisions based on multi-dimensional 
WM content, with four levels of ambiguity associated 
with each dimension of WM features. We observed that 
response time and error rates increase with the 
cumulative ambiguity of WM representations. Through 
computational modeling, we found that a probabilistic 
model, which integrates WM uncertainty, outperformed 
deterministic models. This suggests that WM likely 
employs a probabilistic operation to integrate multiple 
representations, guiding decision-making. 
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Introduction 

In daily life, we constantly select and integrate 
relevant information to guide decisions. Such process 
is facilitated by working memory (WM), a cognitive 
facility that temporarily holds and manipulates 
information planning future action and decision-making 
(Baddeley & Wilson, 2002). Information held in WM is 
encoded as a probabilistic  distribution, representing 
both the memorized content and uncertainty (Li et al., 
2021; Ma et al., 2006). 

Despite these insights into WM’s mnemonic 
mechanisms, how WM integrates multiple WM 
representations and its uncertainty is not well 
understood. Specifically, it is unclear how uncertainty in 
WM representations shape decision-making, 
particularly when facing multifaceted noisy inputs. Our 
hypothesis is that WM integrates information 
probabilistically, considering the uncertainty of task-
relevant features to construct a posterior probabilistic 
task representation to guide decisions. Alternatively, 
WM may operate with a deterministic strategy that 
establishes rigid decision boundaries to dismiss low-
probability information (Figure 1a). Our study employed 
computational models to test these two competing 
accounts. 

 
Figure 1. (a) Probabilistic task representation vs. 
deterministic task representation; (b) Feeding 
procedure; (c) Two lookup tables; (d) Computational 
modeling for testing phase. 

Method 

Twenty-one human subjects (12 females; age range: 
18-35) participated in our experiment. The study 
protocol was approved by our IRB (#201808855). 

Behavioral Paradigm 

A game was designed as the behavioral paradigm. In 
the game, participants took on the role of zookeepers, 
tasked with ensuring the well-being of four artificial 
animals by catering to their dietary preferences. 
Participants first observed two cues on the appearance 
(color) and location (orientation) of food, using this 
information to judge the correct animal to feed based on 
provided feedback (Figure 1b). Notably, understanding 
either color or orientation alone is insufficient for making 
accurate feeding decisions. In the initial training phase, 
participants were acquainted with each animal’s 
appetites, aiming to develop two task representations of 
lookup tables (Figure 1c). As the study progressed to 
the testing phase, the core task remains, but 
participants encountered varying levels of ambiguity in 
both color and orientation cues. This setup aims to 
explore whether working memory integrates ambiguous 
sensory information in a probabilistic or deterministic 
manner to make decisions. To achieve this, we 
introduced four levels of ambiguity for both color and 
orientation by adjusting the proximity of the presented 
color to the preferred food color on the HSV-space color 
wheel, and by altering the presented orientation to the 
preferred food orientation on the circle. We employed a 
full cross-factorial method to systematically evaluate 
the effect of these combined ambiguities on the 
decision-making process. 

Computational Models 
We first applied a reinforcement learning model to 
estimate each subject’s learning outcome of task 
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representations, specifically the likelihood of correctly 
choosing an animal given specific color and orientation 
cues. Starting with a uniform prior distribution to 
represent initial beliefs, the model iteratively updated its 
predictions by incorporating feedback from each trial via 
the learning rate parameter 𝛼:  
 

𝑃!"#(𝑎|𝐶! , 𝑂!) = 	 +
𝑃!(𝑎|𝐶! , 𝑂!) + 𝛼.1 − 𝑃!(𝑎, 𝐶! , 𝑂!)1, 𝑖𝑓	𝑎 = 𝑎!#

𝑃!(𝑎|𝐶! , 𝑂!) + 𝛼.0 − 𝑃!(𝑎, 𝐶! , 𝑂!)1, 𝑖𝑓	𝑎 = 𝑎!$
 

 
where 𝑎!" and 𝑎!# are the correct and paired animal on 
trial 𝑖 , respectively. 𝐶!  and 𝑂!  refer to the color and 
orientation presented on trial 𝑖. 
 
The participant’s decision modeled using a softmax 
function: 
 

∆𝑃 = 𝑃!.𝑎!#|𝐶! , 𝑂!1 − 𝑃!.𝑎!$|𝐶! , 𝑂!1 
𝑃$%&!$' = 𝑙𝑜𝑔𝑖𝑡(𝛽(∆𝑃 + 𝛽"𝐹" + 𝛽#𝐹#) 

 
We then used a probabilistic model to capture human 
decisions with the premise that WM probabilistically 
integrates dual inputs (Figure 1d). For each trial, the 
probabilistic model maintains probabilistic distribution 
conditioned on the presented color/orientation: 
 

𝑃(𝐶!|𝑃𝐶!)	~	𝑣𝑜𝑛	𝑀𝑖𝑠𝑒𝑠(𝐶!|𝑃𝐶! , κ$) 
𝑃(𝑂!|𝑃𝑂!)	~	𝑣𝑜𝑛	𝑀𝑖𝑠𝑒𝑠(𝑂!|𝑃𝑂! , κ&) 

𝑃(𝐶! , 𝑂!|𝑃𝐶! , 𝑃𝑂!) = 𝑃(𝐶!|𝑃𝐶!) × 𝑃(𝑂!|𝑃𝑂!) 
 
Where 𝑃𝐶! and 𝑃𝑂! are presented color and orientation 
on trial 𝑖, respectively. Crucially, the belief of choosing 
each of the two animals based on the presented stimuli 
was calculated by integrating all color-orientation 
combinations from the training phase: 
 

𝑃(𝑎𝑖1|𝑃𝐶! , 𝑃𝑂!) ==𝑃(𝑎𝑖1|𝐶! , 𝑂!)
$,&

𝑃(𝐶! , 𝑂!|𝑃𝐶! , 𝑃𝑂!) 

𝑃(𝑎𝑖2|𝑃𝐶! , 𝑃𝑂!) ==𝑃(𝑎𝑖2|𝐶! , 𝑂!)
$,&

𝑃(𝐶! , 𝑂!|𝑃𝐶! , 𝑃𝑂!) 

 
The decision making and updating of 𝑃!*"(𝑎|𝐶! , 𝑂!) are 
identical to the learning phase. Free parameters κ$,	κ&, 
𝛽(,  𝛽" ,	 𝛽# 	were estimated using maximum likelihood 
estimation. 
 
We developed three types of deterministic models to 
explore whether working memory process information 
probabilistically or deterministically. This includes one 
fully deterministic model, wherein both probabilistic 
distributions 𝑃(𝐶!|𝑃𝐶!)  and 𝑃(𝑂!|𝑃𝑂!)  became 
deterministic using a winner-take-all procedure. We 
also added two partially deterministic models with only 
the color or the orientation was deterministic. 

Results 

 
Figure 2. (a) Trial-wise log loss averaged across 21 
subjects in the training phase; (b) One example of 
learning model performance; (c) Integrated ambiguity 
modulates behavioral performance; (d) AICs among 
four computation models for testing phase; (e) One 
example of probabilistic model performance. (b)(d) Red 
color: model predicted response; blue color: actual 
response. 
Task Representation Learning 
The log loss analysis of the learning model revealed an 
improvement in model prediction across trials, 
suggesting that participants learned the task 
representations (Figure 2a&b).  
Integrated Ambiguity Modulates Behavioral 
Performance 
A two-way rmANOVA with color and orientation 
ambiguity (4 levels each) revealed significant 
interaction effects on both accuracy (F(9,180)=2.35, 
p=0.02) and response time (F(9,180)=1.17, p=0.02), 
suggesting the significant effect of WM integration on 
performance. Additionally, significant variations in 
accuracy (F(6,120)=50.85, p < 0.0001) and response 
time (F(6,120)=9.20, p<0.0001) were observed as a 
function of the integrated ambiguity (Figure 2c). 
Probabilistic Model Outperforms 
Deterministic Models 
The probability model best predicted the subject’s 
response and demonstrated the lowest AIC values 
among the four competing models (Figure 2c&d). 
Protected exceedance probability analysis strongly 
favored the probabilistic model (protected exceedance 
probability=0.9996, Bayes Omnibus risk= 1.9853e-05). 

Conclusion 

Working memory constructs task representations for 
decision making by incorporating the uncertainty of 
task-relevant working memory representations. 
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