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Abstract
Rational process models posit that the brain learns the
hidden structure of the world by approximating Bayesian
inference using Monte Carlo sampling. The stochastic-
ity of such inference algorithms makes it challenging to
study the neural basis of the learning process, since it
is difficult for the experimenter to know what the subject
has inferred at any point in time. Here we tackle this in-
verse learning problem within the framework of inverse
rational control using a simple particle filtering scheme.
We evaluate our method on synthetic data and show that
it uncovers the hidden states inferred by a subject on a
trial-by-trial basis more accurately than a generative ap-
proach that only simulates the learning process. We then
discuss how this method could be applied to a wide range
of topics in cognitive computational neuroscience.
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Introduction
A hallmark of intelligence is the ability to rapidly adapt to
new tasks based on past experience with similar tasks. This
“learning-to-learn” is thought to be supported by the brain’s
ability to construct a mental model of the hidden struc-
ture of the world that abstracts away particular experiences
(Braun, Mehring, & Wolpert, 2010). Such structure learn-
ing encompasses a broad range of phenomena, including
latent learning (Tolman, 1948), formation of learning sets
(Harlow, 1949), causal inference (Bramley, Dayan, Griffiths,
& Lagnado, 2017), and theory learning (Ullman, Goodman,
& Tenenbaum, 2012). Studying the neural basis of structure
learning often involves linking the hidden structure inferred by
a subject during an experiment with simultaneously recorded
neural activity (Tomov, Dorfman, & Gershman, 2018). Yet from
the point of view of the experimenter, the structure inferred by
the subject is itself a latent variable that must be inferred.

Broadly, there are two main approaches to inferring latent
variables represented by the brain: bottom-up (or data-driven)
approaches and top-down (or theory-driven) approaches
(Linderman & Gershman, 2017). Data-driven approaches,
such as state space models, start with weak assumptions
about how the latent variable evolves over time and let the
data fully determine it (Wiltschko et al., 2015). In contrast,
theory-driven approaches, such as ideal observer models,
start with strong assumptions about the learning process, usu-
ally by formalizing it as Bayesian inference (Griffiths & Tenen-
baum, 2005). Data-driven approaches tend to be undercon-
strained, potentially overfitting to noise and resulting in infer-
ences that are difficult to interpret. Theory-driven approaches,
on the other hand, tend to be too constrained, often treating
deviations from optimal behavior as statistical noise. Further,
since perfect inference is often intractable, theory-driven ap-
proaches often require approximations, which potentially ren-
der the results even less biologically plausible.

Contrary to the last point, a number of researchers have
proposed that the stochastic firing of neurons in the brain
might, in fact, implement such sampling-based approxima-
tions of Bayesian inference (Gigerenzer, 1993; Buesing, Bill,
Nessler, & Maass, 2011; Gershman, Horvitz, & Tenenbaum,
2015). In this view, structure learning can be cast as a kind of
Monte Carlo sampling which stochastically explores the space
of possible structures and asymptotically converges the hid-
den structure that is most consistent with the observations
(Sanborn, Griffiths, & Navarro, 2010). Despite its cognitive
plausibility, this approach further complicates the analysis of
neural data, as the structure inferred by the model could devi-
ate substantially from the structure inferred by the brain. This
leaves open the question of how to recover the time course of
subjective beliefs about the structure of the world from data.

Methods

Figure 1: The learning problem from subject’s point of view (A)
and the inverse learning problem from experimenter’s point of
view (B). Adapted from Wu et al. (2018). s, world state/struc-
ture. o, observation. a, action. h, subject’s belief about world
state/structure. Empty circles denote latent variables, solid
circles denote observable variables.

To address this question, we extend the framework of
inverse rational control (Wu et al., 2018) to accommodate
stochastic belief updating. In particular, we make the following
assumptions (Figure 1):

• The world has some hidden structure – a kind of abstract
state s – that is unobservable to the subject.

• The subject can infer this hidden state based on their ob-
servations o and actions a using Bayes’ rule: P(s|o,a) ∝

P(o|s,a)P(s).

• The subject approximates this posterior using a single hy-
pothesis h which is updated stochastically, for example us-
ing Markov chain Monte Carlo (MCMC).

• The experimenter’s goal is to infer the sequence of hypothe-
ses h1:T inferred by the subject, given the subject’s obser-
vations o1:T and actions a1:T .



In short, the subject’s learning process is modeled as se-
quential Monte Carlo sampling (Figure 1A). This frames the
experimenter’s inverse learning problem as an input-output
hidden Markov model (HMM, Sahani (2014); Figure 1B).

The dynamics of the HMM are governed by:

ht ∼ f (ht |ht−1,ot) (1)

at ∼ π(at |ht ,ot), (2)

where the transition distribution f corresponds to the sub-
ject’s learning process and the emission distribution π is the
subject’s policy, parametrized by θ (omitted). This way of mod-
eling the subject’s beliefs strikes a balance between top-down
and bottom-up approaches: it is theoretically-constrained (via
Eq. 1) and yet it takes the data into account (via Eq. 2).

1 def f i l t e r i n g ( o , a , N, sample f , p i ) :
2 T = len ( a ) # number o f t ime po in t s
3 p a r t i c l e s = [ P a r t i c l e (T ) f o r i n range (N) ]
4 w = [ 0 ] * N # importance weights
5 f o r t i n range (T) : # f o r each t imestep
6 f o r i i n range (N) : # f o r each p a r t i c l e
7 # i n i t i a l i z e hypothes is from p r i o r ( a t t =0)

or update hypothes is (Eq . 1)
8 p a r t i c l e s [ i ] . h [ t ] = i n i t h y p o t h e s i s ( )
9 i f t == 0

10 else sample f ( p a r t i c l e s [ i ] . h [ t −1] , o [ t ] )
11 # reweigh hypothes is (Eq . 2)
12 w[ i ] = p i ( a [ t ] , p a r t i c l e s [ i ] . h [ t ] , o [ t ] )
13 p a r t i c l e s = resample ( p a r t i c l e s , w)
14 r e t u r n p a r t i c l e s

Algorithm 1: Inverse stochastic learning.

We solve the HMM using sequential importance resam-
pling, a kind of particle filtering (Doucet & Johansen, 2009)
that approximates the joint posterior over all timesteps T ,
P(h1:T |o1:T ,a1:T ) (Algorithm 1). We initialize N hypotheses
(particles) from a prior. Then, at each timestep, we update
each particle following Eq. 1 by sampling according to the
subject’s learning process f . We then reweigh the particles
following Eq. 2 according to the subject’s policy π, resample
with replacement, and move to the next timestep. We fit the
parameters θ using expectation-maximization (not shown).

Intuitively, this scheme amounts to generatively simulating
multiple versions (particles) of the subject’s stochastic learn-
ing process in parallel and pruning particles that are incon-
sistent with the subject’s actual behavior. Note that this only
requires the ability to sample from f and to compute π. De-
spite its simplicity, this approach converges to the true poste-
rior P(h1:T |o1:T ,a1:T ) as N → ∞.

Results
We applied this approach to a simplified simulated rever-
sal learning task (Aguillon-Rodriguez et al., 2021). Sim-
ulations allowed us to evaluate our approach against the
subject’s actual beliefs, which are generally inaccessible to
the experimenter. A simulated subject performed a two-
alternative forced choice task where, on each trial, either
the left or the right choice was rewarded (Figure 2A). The
design was blocked, such that in each block, one side
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Figure 2: Inverse stochastic learning applied to simulated re-
versal learning. (A) Subject’s point of view: rewarded side
s1:T , unobservable to subject (black); subject’s belief h1:T
about rewarded side (blue); subject’s choices a1:T (green). (B)
Experimenter’s point of view: subject’s belief h1:T , unobserv-
able to experimenter (blue; same as in A); average belief h̄1:T
over generative simulations, ignoring the subject’s behavior
(red); inferred belief ĥ1:T based on particle filtering (yellow)
and smoothing (purple).

was rewarded. The rewarded side was the hidden state,
i.e. st = I[left side is rewarded on trial t]. We as-
sumed the subject employs a simple stochastic win-stay lose-
shift strategy f that maintains the same belief h following re-
warded trials and flips with some probability following unre-
warded trials. We also assumed a stochastic policy π that
chooses the favored side with some high probability. While
technically not structure learning, this example serves to illus-
trate our method and also highlight its general applicability.

Simulating the subject’s learning process generatively
(Eq. 1), without taking subject behavior into account (Eq. 2),
correlates with the ground truth state s (r = 0.97±0.01) and
the subject’s belief h (r = 0.53± 0.02; Figure 2B). However,
the correlation is significantly stronger when using particle fil-
tering (r = 0.66±0.02,T (99) = 6.70, p< 10−8) or smoothing
(r = 0.73±0.02,T (99) = 11.57, p < 10−19) that additionally
take behavior into account (Eq. 2). Smoothing performs better
than filtering alone (T (99) = 4.03, p = 0.0001).

Discussion

Our method can be used to recover the trajectory of structural
beliefs based on subject behavior, particularly in complex do-
mains in which optimal inference is intractable. By mapping
such beliefs to brain activity, researchers can evaluate differ-
ent hypotheses about how the brain learns the structure of the
world. This could be applied to reverse-engineering the neural
mechanisms supporting different kinds of structure learning,
including causal structure learning (Tomov et al., 2018), social
structure learning (Lau, Gershman, & Cikara, 2020), context-
dependent learning (Geerts, Gershman, Burgess, & Stachen-
feld, 2023), hippocampal remapping (Sanders, Wilson, & Ger-
shman, 2020), and theory learning (Tomov, Tsividis, Pouncy,
Tenenbaum, & Gershman, 2023). In addition, our method
can be applied to other instances of sampling-based learning,
such as concept learning (Goodman, Tenenbaum, Feldman,
& Griffiths, 2008), change point detection (Brown & Steyvers,
2009), and conditioning (Daw & Courville, 2008).
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Code for the simulations can be found at
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