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Abstract
Studying how humans transform complex, high-
dimensional stimuli into appropriate behavior within
time-continuous environments has been challenging
due to the prevalent use of trial-based study designs.
Deep Q-Networks (DQNs) have emerged as valuable
tools for modeling stimulus-response (S-R) transforma-
tions in such environments. Here, we showed that a
DQN-based encoding model approach can be used to
predict neural activations and human behavior using
features generated by a DQN. Therefore, we collected
motor responses and fMRI data from human subjects
(N=23) while playing arcade games. We hypothesized
that advancements in machine learning can be leveraged
to improve prediction accuracy. We compared the pre-
diction accuracy of features generated by two recently
developed DQNs and a third baseline DQN, each differing
in network architecture and training procedures. We
present preliminary evidence that all three DQNs predict
behavior and fMRI activations significantly above chance
at a fine-grained temporal scale. Features generated by
the most advanced model achieved the best results. We
found a hierarchical correspondence between the layers
of DQNs and stages of human visuo-motor processing.
These findings suggest that improved DQNs serve as
suitable tools for modeling S-R transformations in a
time-continuous manner.
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Introduction
The human brain filters complex environmental information
and transforms them into appropriate motor responses. While
the conventional experimental approach, characterized by its
trial structure and use of low-dimensional stimuli, has offered
important insights into the brain’s functionality, investigating
how the brain processes high-dimensional stimuli in a complex
and time-continuous environment has remained challenging.
Neural networks (NNs) coupled with an encoding model have
emerged as a promising approach to address this issue. NNs
generate features for the encoding model, enabling, for in-
stance, the characterization of voxel responses underlying the
visual processing of stimuli. Moreover, this approach has re-
vealed a gradient between the layers of an NN and visual pro-
cessing stages in the human brain (Cichy, Khosla, Pantazis,
Torralba, & Oliva, 2016; Eickenberg, Gramfort, Varoquaux,
& Thirion, 2017). Deep Q-networks (DQNs), a combination
of reinforcement learning (RL) and deep learning, have ex-
tended the approach to more complex and time-continuous
stimuli. It has even been demonstrated that human behavior
(Mohr, Cichy, & Ruge, 2019) and neural activity during game-
play of arcade games can be modeled (Cross, Cockburn, Yue,
& O’Doherty, 2021). DQNs were trained to estimate, for each
state and action, the expected, discounted future reward, the
Q-value, without any human data. The ongoing rapid improve-
ments in the field of RL have resulted in DQNs capable of

solving complex tasks at human-level and beyond (Espeholt,
Marinier, Stanczyk, Wang, & Michalski, 2019). Based on the
previous results, we aimed to address the question of whether
these advancements can be translated into better modeling of
neural activations underlying stimulus-response (S-R) trans-
formations. We collected fMRI data and motor responses of
subjects playing arcade games. To assess progress in RL,
we considered two recently developed DQNs, Ape-X (Horgan
et al., 2018) and SEED (Espeholt et al., 2019), and a base-
line DQN (Mnih et al., 2015) as feature-generating mappings
within an encoding model. We compared the prediction ac-
curacy of the three DQN-based encoding models in predict-
ing human brain activity and behavior. We hypothesized that
SEED, as the most complex model, exhibits the highest accu-
racy in modeling behavior and neural activations within task-
related brain regions. We present initial evidence that ad-
vanced DQN-based encoding models have the potential to
model S-R transformations in visuo-motor tasks.

Methods
Task
Data Acquisition Subjects (N = 23, age: 24.3 years, age
range: 19-35 years) were tasked with playing three Atari
games: Breakout, Space Invaders, and Enduro. The task
was sampled at 45 Hz. For each game, subjects practiced
the game. After training, they conducted the main experiment
consisting of 5 sessions, each session lasting 7 minutes, in-
side an MRI scanner. Motor responses, video screens, and
fMRI data were recorded. A four-button response pad was
used as an input device.

Principles of the Games In Breakout, the player must con-
trol a paddle to smash a wall of bricks with a ball. In Space
Invaders, the player must fight aliens with a spaceship before
they reach Earth. In Enduro, the player aims to overtake as
many cars as possible. Response options included ’no action’,
’left’, ’right’, ’hit brake’, ’fire’, and all combinations.

Analysis
Encoding Model To predict human behavior and voxel ac-
tivations we used a DQN-based encoding model approach
(Figure 1). First, a DQN was used as a feature-generating
mapping. We processed each frame of the human-generated
videos by the DQN, resulting in a time series of activation val-
ues for each neuron of the DQN. The activations of the top
layer neurons can be interpreted as Q-values associated with
each possible action for a given input screen. For each DQN,
game, and subject we separately employed a general linear
model (GLM) to fit the generated stimulus features to human
data. To model human behavior, we used the time series of
Q-values as predictors and the motor responses of subjects
as the dependent variable. To explore an initial validation of
a hierarchical relationship between DQN layers and visuo-
motor processing steps, we estimated voxel-specific GLMs
with layer-specific predictors. For each voxel, we compared
the prediction accuracy of two GLMs. In the first GLM, which



required regularization, we tested the activations of neurons
from the first layer of a DQN as predictors, while in the other
GLM, we tested the activations of neurons from the output
layer as predictors. The voxel’s time series served as the de-
pendent variable. Before using the time series in a GLM, they
had to be preprocessed. This involved smoothing the DQN
and human time series using a Gaussian kernel with a full
width at half maximum of 5.3 seconds. To assess prediction
accuracy, a 5-fold cross-validation procedure was used. The
GLMs were fitted to four out of five sessions, and the Pear-
son correlation coefficient (PCC) between the predicted hu-
man time series and the actual one was calculated on the left-
out session. This was repeated until each session was used
once as a test session.

Figure 1: DQN-based encoding model: The human-generated
video was processed by the DQN. The time series of neuron
activations were used as predictors in a GLM to predict human
data. The red-marked region of the brain represents the early
visual region of interest (V1), and the green area corresponds
to motor areas (MA).

DQNs We compared three encoding models based on a
baseline DQN (Mnih et al., 2015), Ape-X (Horgan et al., 2018;
Shirokuma, 2020)) and SEED (Espeholt et al., 2019). The
baseline DQN is a ”vanilla” feed-forward NN consisting of six
layers, three of them convolutional. Ape-X and SEED also
incorporate three convolutional layers while implementing ad-
vanced learning techniques and integrating additional compo-
nents into their architecture, such as a dueling architecture
that separates action evaluation and state evaluation. SEED,
the most advanced model, also introduces a long short-term
memory, allowing the incorporation of past experiences into
decision-making processes. These advancements have led to
improved model performances when playing arcade games.

Results

Prediction of Human Behavior

The accuracy of predicting human behavior is depicted in Fig-
ure 2. The three encoding models predicted human motor
responses significantly above chance level (Fisher-z trans-
formed, one-sample t-test, p < .001). SEED exhibited a sig-
nificantly higher correlation compared to the baseline DQN
and Ape-X across all three games (Fisher-z transformed,
paired t-test, p < .01, Bonferroni correction), confirming our
hypothesis at a behavioral level.

Figure 2: Predicting human behavior: Mean value of the PCC
across all test blocks and subjects. Significant differences
(Bonferroni correction) are denoted by ’*’.

Prediction of Human Brain Activations
In Figure 3, we provided initial evidence, using the example
of Enduro, that a DQN-based encoding model could achieve
high accuracy in predicting activations of voxels within V1 and
within MA (see Figure 1). Preliminary findings suggested a hi-
erarchical correspondence between the layers of a DQN and
the stages of visuo-motor processing. For all three DQNs, the
difference (gradient) of prediction accuracy from V1 to MA,
represented by r(MA)− r(V 1), where r(MA) and r(V 1) de-
note the PCC of MA and V1 respectively, increased as the
layer index increased (Fisher-z transformed, one-tailed paired
t-test, p < .001). In SEED, the increase in gradient was most
clearly observed, with V1 best predicted by the first layer and
MA best predicted by the last layer (Fisher-z transformed, one-
tailed paired t-test, p < .01).

Figure 3: Predicting brain activations: Mean value of the PCC
for voxels within V1 (Calcarine sulcus, Cuneus) and MA (pre-
central gyrus, supplementary motor area) using features of
the first and last layers of the DQNs in a layer-specific encod-
ing model. The lines are labeled with the gradient. Signifi-
cant non-zero gradients are denoted by ’*’ (one-sample t-test,
p < .005). A significant increase in gradients is denoted by
’**’ (one-tailed paired t-test, p < .001).

Discussion
Our findings provide initial evidence that DQN-based encod-
ing models can predict behavior and activation patterns re-
lated to S-R transformations within time-continuous environ-
ments. They confirm our hypothesis that advancements in RL
can be leveraged to enhance modeling capabilities. These
predictions can be made at a fine-grained temporal scale,
complementing the trial-based experimental study designs.
This invites an expansion of the approach to hidden layers
of the DQNs, investigating whether early layers in the DQN
align with early visual areas, while higher DQN layers progress
along increasingly higher-order regions of the dorsal stream.
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