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Abstract
Human perception of basic visual attributes is often in-
fluenced by spatial context. A canonical example is the
tilt illusion, in which the perceived orientation of a stim-
ulus is altered by the presence of a spatially oriented
surround. We hypothesize that surround effects origi-
nate from changes in neural representation that maximize
coding efficiency based on spatial context. We simul-
taneously collected perceptual and fMRI data from hu-
man participants in a tilt-illusion experiment. We found
that orientation encoding in the absence of a surround
reflects natural scene statistics both in behavior and in
the neural responses of the visual cortex. In the pres-
ence of an orientated surround, encoding accuracy was
significantly increased at the surround orientation. The
pattern of change in coding accuracy is consistent with
the surround-conditioned orientation statistics of spa-
tially adjacent regions in natural images. Furthermore, we
found the same orientation encoding characteristics and
contextual modulation in convolutional neural networks
trained on natural images. Our results suggest that effi-
cient coding based on spatial context is a general mech-
anism in visual processing of natural images.
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Introduction
Human perception of orientation is shaped by spatial context.
For example, in the tilt illusion, the perceived orientation of
a center stimulus can be altered by the presence of an ori-
ented surround (Gibson & Radner, 1937). Explanations of
the tilt illusion have primarily focused on how the surround
context changes the neural representation of orientation. Re-
search has shown that neurons in the early visual cortex sup-
press their responses to, and shift their tuning preferences
away from, the contextual orientation (Dragoi, Rivadulla, &
Sur, 2001; Benucci, Saleem, & Carandini, 2013). Other stud-
ies have demonstrated that neural responses evoked by stim-
uli within the receptive field (RF) exhibit complex dependen-
cies on content outside the RF (Angelucci & Bressloff, 2006).

Connecting these neural findings to perceptual behavior is
challenging, however, due to the lack of a coherent theoretical
framework. More broadly, there is still a need for a functional
and teleological account of the tilt illusion. In this study, we
aim to address these issues by studying the tilt illusion dur-
ing simultaneous measurements of behavior and neural activ-
ity. We interpret these data from an efficient coding perspec-
tive, which relates changes in neural representation to natural
scene statistics. We also demonstrate how the same efficient
coding principle applies to artificial neural networks trained to
perform tasks involving natural images.

Methods
Experimental Design Subjects (n = 10) performed a de-
layed orientation estimation task conducted in the fMRI scan-
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Figure 1: Subjects performed a orientation estimation task of
garting stimuli, presented within an annular surround of either
non-oriented noise, or one of two fixed orientations.

ner (Fig. 1). On each trial, an orientation stimulus was pre-
sented for 1.5 sec within an annular surround of either non-
oriented noise, or gratings with one of two fixed orientations
(± 35 degrees off vertical). After a blank delay period, a line
probe appeared, and subjects used a two-button pad to rotate
the probe and report their estimates. Each subject completed
a total of 1,200 trials (400 trials for each surround condition).

Theoretical Framework We model orientation perception
as an encoding-decoding process (Stocker & Simoncelli,
2006). Stimulus orientation θ is encoded as a noisy neural
measurement m, described by the encoding model p(m|θ).
The Fisher Information (FI) of the encoding is defined as
J(θ) = E[( ∂

∂θ
log p(m|θ))2|θ], which quantifies the precision

of the encoding as a function θ. Importantly, it has been sug-
gested that for a neural population that encodes information
efficiently under resource constraints, there is a direct relation-
ship between the stimulus prior p(θ) and the FI of encoding
as p(θ) ∝

√
J(θ) (Wei & Stocker, 2015, 2016). In our analy-

sis, we infer the FI of orientation encoding independently from
the behavioral data (referred to as Behavioral FI); fMRI neu-
ral data (referred to as Neural FI); and convolutional neural
networks (referred to as ConvNet FI). We will examine how
FI varies between surround conditions, and how it relates to
orientation priors of the natural environment.

Data Analysis Behavioral FI: Given an encoding model
p(m|θ) with FI J(θ), the Cramer-Rao Lower Bound states
the following: J(θ) ≥ [1+b′(θ)]2/σ2(θ) (Casella & Berger,
2021). Here b(θ) is the bias, and σ2(θ) is the variance.
We assume the lower bound is tight, allowing us to infer FI
from the bias and variance of subjects’ response data (Noel,
Zhang, Stocker, & Angelaki, 2021). Neural FI: We model
the voxel activity based on a probabilistic encoding model
developed previously (Van Bergen, Ji Ma, Pratte, & Jehee,
2015). The model defines a multivariate normal distribution
over voxel responses N(m; µ(θ),Ω). To obtain the neural
FI, we directly compute the average negative second deriva-
tive of the log-likelihood function using the encoding model.
A cross-validation procedure was employed where the model
parameters and the FI were estiamted from separate trials.
ConvNet FI: We denote the responses at a given layer of a
convolutional neural network (CNN) to an orientation stimu-
lus as r = f (θ). The ConvNet FI for independent Gaussian
noise is J(θ) = ||∂ f/∂θ||22 (A. Benjamin, Qiu, Zhang, Kording,
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Figure 2: Orientation priors and orientation encoding FI. A) Orientation prior measured from photographic images of different
environments, reproduced from Girshick et al. (2011). B) Behavioral FI, C) Neural FI of two ROIs in early visual cortex, and
D) ConvNet FI, for stimulus with non-oriented surround. E) Distribution of the differences in orientation between the center and
surround regions in natural images reproduced from Felsen et al. (2005). F) - H) Comparison of the F) Behavioral, G) Neural,
and H) ConvNet encoding FI between the near-surround side (colored line) and far-surround side (gray line) in the oriented
surround condition. Solid lines are obtained from Fourier series fits. Shaded areas and error bars indicate +/- SEM.

& Stocker, 2019). Lastly, to compare FI directly between con-
ditions, and with orientation priors, we report the normalized,
square root of FI: J̃(θ) =

√
J(θ)/

∫
θ

√
J(θ)dθ, which can be

interpreted as an orientation prior inferred from neural coding.

Results
We first examine orientation encoding FI in the non-oriented
surround condition. Note that we assumed vertical symmetry
and combined the data from the negative and positive range.
We found that orientation encoding at baseline is anisotropic
(Fig. 2B): Behavioral FI is highest at the cardinal orientations,
and lowest at the obliques. This pattern of non-uniform en-
coding is also reflected in the neural activity in areas of the
early visual cortex (Fig. 2C). Consistent with previous stud-
ies (Henderson & Serences, 2021; A. Benjamin et al., 2019;
A. S. Benjamin, Zhang, Qiu, Stocker, & Kording, 2022), a sim-
ilar pattern of encoding was obtained from two CNN models
trained on natural images (Fig. 2D). Thus, as predicted by
the efficient coding hypothesis, the encoding FI resembles the
environmental priors of orientation (Fig. 2A).

We now consider the tilt illusion by examining encoding
in the oriented surround conditions. At the behavioral level,
a surround context induces a strong repulsive bias near the
surround orientation and a subtle attraction further away in
the perceptual estimates (Clifford, 2014). To understand the
changes in encoding, we compare the encoding FI close to
the surround orientation (near surround) to that further away
from the surround (far surround). We observed a significant
increase in behavioral FI close to the surround orientation,

while the overall pattern, such as the cardinal bias, remains
unchanged (Fig. 2F). Consistent with the behavioral mea-
sure, we found a significant effect of surround modulation in
the hV4/VO1/2 areas (Fig. 2G). A smaller, but still significant,
effect was also observed in V2/V3. Lastly, when presented
with stimuli in the oriented surround condition, a comparable
pattern of surround modulation was revealed in the CNN mod-
els (Fig. 2H; similar results were obtained in VGG16).

Why should the visual system increase encoding precision
close to the surround orientation? Efficient coding theory sug-
gests that the increase in encoding FI should correspond to an
increase in the probability of orientations. Indeed, we found
that the change in encoding FI closely resembles the proba-
bility distribution of orientation differences between center and
surround regions in natural images (Fig. 2E). That is, when a
particular surround orientation is observed, it signals a signifi-
cant increase in the probability of the center orientation being
similar. Therefore, more encoding resources should be allo-
cated to orientations closer to the surround.

Summary
Our results suggest that the tilt illusion emerges naturally from
a dynamic coding strategy that efficiently reallocates neural
coding resources based on the spatial stimulus context. Fur-
thermore, the same mechanism may also be applicable to
artificial systems trained to process natural images. Future
work will aim to generalize our finding to other contextual phe-
nomenon, such as the tilt aftereffect (Schwartz, Sejnowski, &
Dayan, 2009).
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