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Abstract
Variational autoencoders (VAE) employ Bayesian infer-
ence to interpret sensory inputs, mirroring processes that
occur in primate vision across both ventral (Higgins et al.,
2021) and dorsal (Vafaii, Yates, & Butts, 2023) pathways.
Despite their success, traditional VAEs rely on continu-
ous latent variables, which significantly deviates from the
discrete nature of biological neurons.

Here, we developed the Poisson VAE (P -VAE), a novel
architecture that combines principles of predictive cod-
ing with a VAE that encodes inputs into discrete spike
counts. Combining Poisson-distributed latent variables
with predictive coding introduces a metabolic cost term
in the model loss function, suggesting a relationship with
sparse coding. We explored this connection, training
a P -VAE with a linear decoder and an overcomplete la-
tent space on natural image patches, contrasting it with
a traditional Gaussian VAE. Unlike the Gaussian VAE,
which learned features similar to principal component
analysis, P -VAE exhibited Gabor-like feature selectivity,
reminiscent of sparse coding patterns. Notably, P -VAE
with a linear decoder effectively implements “Amortized
Sparse Coding,” where inference over neural activations
is achieved through the VAE encoder.

Our work provides an interpretable computational
framework to study brain-like sensory processing and
paves the way for a deeper understanding of perception
as an inferential process.
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Introduction
Brains have access to noisy, incomplete sensory data, which
necessitates an active process to infer the underlying causes
of sensory information—a concept similarly reflected in proba-
bilistic generative models like variational autoencoders (VAE)
(Kingma & Welling, 2014; Rezende, Mohamed, & Wierstra,
2014). Consequently, VAEs have emerged as promising com-
putational models of visual perception (Higgins et al., 2021;
Vafaii et al., 2023; Storrs, Anderson, & Fleming, 2021; Csikor,
Meszéna, & Orbán, 2023). However, in contrast to the dis-
crete nature of spiking biological neurons, VAEs are typically

parameterized using continuous, Gaussian-distributed latent
variables, significantly limiting their biological realism and in-
terpretability.

We address this gap by introducing the Poisson VAE (P -
VAE; Fig. 1a), a generative model with a discrete, Poisson-
distributed latent space. P -VAE brings together key con-
cepts in neuroscience, such as rate coding and predictive cod-
ing, and links them to modern machine learning. Combining
Poisson-distributed latents with predictive coding leads to the
emergence of a metabolic cost term in the model loss func-
tion. This property reveals an unintentional but welcome con-
nection to sparse coding (Olshausen & Field, 1996), which we
verify empirically by training a linear P -VAE (Fig. 1b) on nat-
ural image patches. In the remainder of the paper, we cover
necessary background information, develop the P -VAE the-
ory, and end with the empirical results.
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Figure 1: Introducing the Poisson VAE (P -VAE). (a) Model
architecture. Colored shapes depict learnable model param-
eters, including the prior firing rates, rrr. We color code the
model’s inference and generative components using red and
blue, respectively. The P -VAE encodes its inputs in discrete
spike counts, zzz, significantly enhancing its bio-realism. (b)
“Amortized Sparse Coding” as a special case of the P -VAE.



Background, Methods, and Results
We consider a probabilistic generative model p(xxx,zzz) of
observed data xxx ∈ RM , and K-dimensional latent vari-
ables zzz, with a data generative process given by p(xxx) =∫

p(xxx|zzz)p(zzz)dzzz. VAEs learn an approximate posterior, q(zzz|xxx),
from data by minimizing the following loss function:

F (q) =−Ezzz∼q(zzz|xxx)

[
log p(xxx|zzz)

]
+DKL

(
q(zzz|xxx)

∥∥ p(zzz)
)
. (1)

The first term, the “reconstruction loss”, describes how well
the VAE reconstructs the data xxx, and typically uses the mean
squared error (Fig. 1). The second term, the “KL term”, is the
Kullback-Leibler divergence, DKL, of the approximate poste-
rior from a prior p(zzz). Practitioners have complete autonomy
in choosing the form of these probability distributions, how-
ever, the vast majority of VAE literature uses Gaussian dis-
tributions, p(zzz) = N (zzz;000,111) and q(zzz|xxx) = N (zzz;µµµ(xxx),σσσ2(xxx)),
where µµµ(xxx) and σσσ2(xxx) are produced by the encoder network.

Poisson Variational Autoencoder (P -VAE). Our key inno-
vation is integrating Poisson-distributed latents into VAEs. We
set p(zzz) = P ois(zzz;rrrprior) and q(zzz|xxx) = P ois(zzz;rrrpost.(xxx)) as
our prior and approximate posterior distributions, respectively,
where P ois(zzz;λλλ)=∏

K
i=1 λ

zi
i e−λi/zi!, and zzz∈ZK

≥0 are discrete
spike count variables. The prior rates, rrrprior, are learnable pa-
rameters, and rrrpost.(xxx) are produced by pushing the data sam-
ple xxx through the encoder neural network. In this paper, we
will color code the encoder- and decoder-related parameters
using red and blue, respectively (Fig. 1).

Predictive coding and the P -VAE. Predictive coding posits
that the cortex maintains predictions of incoming sensory in-
formation, and only prediction errors are propagated up the
cortical hierarchy (Rao & Ballard, 1999). This idea is seam-
lessly incorporated into P -VAE by assuming multiplicative in-
teractions between representation units, rrrprior, and the feed-
forward encoding information, rrrpost.(xxx). Explicitly, let rrrprior →
rrr, and rrrpost.(xxx) → rrrδδδrrr(xxx). Thus, the encoder only produces
the residual information, δδδrrr(xxx) (Fig. 1a). We plug these as-
sumptions into the general VAE loss function in eq. (1) to ob-
tain the P -VAE objective:

LP VAE = Ezzz∼P ois(zzz;rrrδδδrrr)

[
∥xxx−dec(zzz)∥2

2

]
+

K

∑
i=1

ri f (δri), (2)

where f (y) = 1−y+y logy. The second term in eq. (2) stems
from the KL term in eq. (1), and its specific form is uniquely
determined by our choice of Poisson distributions. This term is
minimized by reducing the representation unit firing rates (rrr ≈
000). Because firing rates are non-negative, it is reminiscent of
the L1 penalty used in sparse coding and reflects a metabolic
cost for spiking.

Amortized Sparse Coding as a special case of the P -VAE.
The relationship between P -VAE and sparse coding can be
seen directly if (i) the decoder of P -VAE is linear; and, (ii)
the latent space is overcomplete (Fig. 1b). In this case, the

decoder generates an image identically to the linear genera-
tive model from Olshausen and Field (1996): x̂xx = ΦΦΦzzz, where
ΦΦΦ ∈RM×K is a dictionary of basis elements with K > M. The
key difference is that in the P -VAE, inference over latents zzz
is performed by the encoder, as opposed to numerically opti-
mized. In this sense, P -VAE with a linear decoder instantiates
amortized sparse coding.

We trained a linear P -VAE on 16 × 16 natural image
patches extracted from the DOVES dataset (Bovik, Cormack,
Linde, & Rajashekar, 2009), comparing it with the Gaussian
counterpart that features a continuous latent space. Figure 2
shows the learned dictionaries. As expected, the Gaussian
model’s basis elements resemble those of principal compo-
nent analysis (PCA), aligning with previous results that linear
Gaussian VAEs are equivalent to probabilistic PCA (Tipping &
Bishop, 1999). In sharp contrast, the P -VAE learned Gabor-
like feature selectivity, reminiscent of sparse coding patterns.
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Figure 2: Learned basis elements (512 total, each made of
16×16= 256 pixels. In other words, ΦΦΦ∈R256×512). Features
are ordered from top-left to bottom-right, in ascending order
of their associated variance, σσσ2, and, prior firing rate, rrr, for
Gaussian and Poisson VAEs, respectively.

Conclusions

We introduced the Poisson Variational Autoencoder (P -VAE),
which: (1) encodes inputs into discrete spike counts, making
it a bio-realistic candidate model for sensory processing; (2)
brings together major theoretical concepts in neuroscience,
such as predictive and sparse coding, under the umbrella
of variational Bayesian inference; and (3) sets the stage for
developing deep hierarchical models to advance our under-
standing of perception as hierarchical Bayesian inference.
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