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Abstract: 

While humans can rapidly learn new tasks, the underlying 
task representations are less known. We posited that a 
task, such as cooking, might be conceptualized in various 
formats—either as a sequence of steps (sequence-form), a 
collection of discrete tasks (task-form), or as 
interconnected subtasks linked by transitions (transition-
form). To probe these ideas, we designed a delayed 
matching paradigm where participants were required to 
remember a stimulus composed of five distinct features 
and then select the matching option for a prompted feature 
after a brief interval. Five trials form a sequence, each 
having a fixed order of cued features. A good memory of 
sequence/transition can predict the upcoming task and 
enhance performance. We tested the dynamics of different 
representational forms by training participants (n = 37) with 
varying combinations of sequences at different stages. We 
developed a model with a hidden variable for each 
representational form. Model comparison results 
supported the presence of representations in different 
forms and characterized their dynamics in learning. In 
summary, our findings underscore the dynamic changes in 
task representation during learning. 
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Introduction 

Our daily activities often comprise a series of routine 
steps. Take, for instance, the process of cooking a dish, 
which includes preparing ingredients and spices, heating, 
frying, among other steps. Mastery of these steps enables 
individuals to not only predict subsequent actions easily, 
but also to execute recipes including similar steps. 
However, when a chef must deal with multiple cooking 
tasks simultaneously, the sequences may interfere with 
each other and cannot be easily accessed. 

Previous research has suggested a hierarchical 
representation structure for higher-order processing, such 
as cognitive control. For instance, Vaidya et al. (Vaidya & 
Badre, 2022; Vaidya et al., 2021) suggest that the human 
prefrontal cortex organizes task representations 
hierarchically, with the more rostral part encoding more 
abstract aspects and the more caudal part dealing with 
more concrete aspects. In a similar vein, Postle and 
Oberauer (2022) have delineated between declarative 
and procedural working memory, proposing a divergence 
in the representation of sequences and contents. 
Furthermore, Trach et al. (2021) have demonstrated that, 
with practice, the sequence-level representation of 
abstract tasks can strictly influence the sequence of 
concrete motor responses mediated by subtasks but not 
vice versa, suggesting a mixed hierarchy during 
sequential task implementation. Drawing on these 
insights, we hypothesize the existence of various formats 
of task representations, encompassing sequence, task, 
and transition forms (i.e., encoding part of the sequence). 
More importantly, we aim to investigate whether the 
prominence of these representations is modulated by the 
task demand at hand. 

To this end, we designed a series of task sequences 
containing transitions of different training frequencies. We 
trained participants on different sequences at varying 
stages. Our findings provide evidence for all three types 
of representations and reveal a dynamic modulation in the 
strength of these representations as training progresses. 

Materials and Methods 

Experimental Design 

 

 
We enrolled 37 young healthy participants (18-35 years 
old, average of 22.6 ± 4.2 years; 18 females). They were 
asked to perform multiple 5-trial mini-blocks to equip an 
avatar with gears based on a goal image (Fig. 1, top 
panel). Each trial started with a sequence cue (500ms), 
succeeded by a fixation (400-600ms), a goal image 
(1000ms), a blank screen (1000ms), a gear selection 
screen (2000ms if rt >= 1000ms, 1000ms if rt < 1000ms) 
and a feedback (1000ms). Error trials will be repeated 
until they are corrected (repetition trials). Participants 
were asked to respond to the gear selection screen with 
“F” and “J” keys as quickly and as accurately as possible. 

Figure 1. Task design and training procedure. The top 
panel shows the mini-block and trial procedures. The 
middle panel shows the procedure of three main training 
sessions. The bottom panel shows the eight different 
sequences used in different sessions, with arrow color 
and thickness indicating varying training frequencies. 



There were one practice block with 20 trials and 12 formal 
blocks with 60 trials each. The formal blocks can be 
divided into three sessions, each with four blocks. The 
sequence cue varies in different sessions. In the practice 
block, the sequence cue was “X”, indicating a random 
sequence, whereas the sequence cues in the 
first/second/third session were “A”, “A”-“C”, and “A”-“H”, 
respectively, with each sequence equally distributed 
within each session (Fig. 1, middle and bottom panels). 

Computational Model 

Both RTs and ERs were collected. To delve into the 
different task representations and their impact on 
behavioral performance, we constructed a computational 
model positing distinct state variables for each level of 
representation within memory (Fig. 2A). These variables 
range from 0 to 1, are presumed to strengthen with 
repeated exposure to the same tasks, sequences, or 
transitions, and weaken over time due to forgetting. This 
dynamic is modeled via learning (α) and forgetting (β) 
rates. Specifically, the sequence representation is 
conceptualized as an 8x1 vector, with each element 
corresponding to a task sequence. An example of the 
hypothetical change dynamics of sequence 
representational strength is shown in the inset of Fig. 2A. 
The transition representation takes the form of a 5x5 
matrix, denoting the likelihood of transitioning from one 
task to another. The task representation, akin to the 
sequence, is represented by a 5x1 vector, with each entry 
denoting the strength of each task. In addition, we also 
include a gating factor (termed as task exclusion, Texl) that 
excludes completed tasks from the pool of remaining 
tasks within each mini-block. This factor will lead to a load 
effect in which performances of later steps are better than 
earlier steps. The task/sequence representations and the 
gating factor determine the entropy of predicting the 
upcoming task, thereby influencing behavioral 
performance, whereas the task representation strength 
directly influences behavioral performance. The entropy 
and task representation are submitted to a regression to 
predict the behavioral performance (both RT and ACC), 
and parameters (i.e., α and β for sequence/transition/task 
and Texl) are optimized through minimizing the overall AIC 
of the regression models (Fig. 2A).  

Results and Discussion 

We tested eight nested models that involve different 
combinations of representation forms (Fig. 2B). Model 
comparison results suggest that the full model performs 
the best, ps < .001, thereby providing robust evidence for 
the presence of all the three representations. The 
accuracy of this model is evidenced by its ability to align 
predicted RTs closely with the observed RTs. Specifically, 
it mirrors the initial decline in the task load effect (slower 
RT for earlier steps) in blocks 3-4 compared to blocks 1-
2, t(36) = −7.11, p < .001, followed by an increase in 
blocks 5-6 (t(36) = 4.12, p < .001), and a relatively stable 
pattern in blocks 6-12 (Fig. 2D), ps > .11. 

    In addition, to assess the role of task-form 
representation, we analyzed the regression coefficient for 
the task representation and conducted a one-sample t-
test. Results showed that the stronger task representation 
is related to smaller RT, t(36) = −4.39, p < .001. This 
suggests the  engagement of strong task-form 
representation (Fig. 2C).  

In conclusion, our results support the existence of the 
three representational forms that all significantly influence 
task performance. Furthermore, our findings illuminate 
the dynamic nature of these representations, revealing 
how experience can influence these cognitive structures 
over time. 

 
 

Figure 2. Computational model and results. A) The 
computational model posits a dynamic change of each 
representational format, which predicts the behavioral 
performance. The inset illustrates the hypothetical 
change of the representational strength for sequence-
form with learning. B) The comparison between eight 
alternative models, with the three numbers in the model 
indices (e.g., 111) suggesting whether sequence 
/transition/task representations are included in the 
model. C) Parameter coefficients for entropy and task 
representation, two key regressors in the model fitting. 
D) Predicted RT (red color) overlaid with real RT (black 
color) for sequence A. The blue colored line shows the 
changing working memory load effect with learning. 
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