Characterizing the Contributions of Reward and Emotion Information on Learning
Through Adolescence

Camille V. Phaneuf (cphaneuf@g.harvard.edu)
Harvard University Department of Psychology, 52 Oxford Street
Cambridge, MA 02138 USA

Elizabeth A. Phelps (phelps@fas.harvard.edu)
Harvard University Department of Psychology & Center for Brain Science, 52 Oxford Street
Cambridge, MA 02138 USA

Leah H. Somerville (somerville@fas.harvard.edu)
Harvard University Department of Psychology & Center for Brain Science, 52 Oxford Street
Cambridge, MA 02138 USA

Abstract

To behave adaptively, individuals of all ages must heed
value information in their environments. This study char-
acterizes how incidental and integral value cues shape
learning from childhood to adulthood (N=114, 8-22 years).
Within a probabilistic reinforcement learning task, emo-
tional expressions conveyed incidental information while
monetary rewards conveyed integral information. In
some conditions, emotion and reward contributed to
value in a congruent manner: following either cue pro-
moted learning. In other conditions, emotion and reward
contributed to value in an incongruent manner: following
the emotion cue impeded reward learning. Model-free and
computational modeling analyses revealed that, indeed,
although participants of all ages adopted condition-wise
learning strategies, younger participants’ learning was
most disrupted by emotion-reward incongruency. Mean-
while, older participants leveraged emotion-reward con-
gruency to guide their choices to the greatest degree.
Together, this work sheds light on age-related changes
in the use of incidental and integral information for goal-
directed actions.
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Background

We are faced with a barrage of information throughout the
lifespan. How do multiple information streams guide our be-
havior when those streams are in harmony vs. in conflict?
Value information frequently takes form as emotional expres-
sions or monetary rewards, and the current research exam-
ines how these cues distinctly and synergistically modulate
learning from childhood to adulthood. We focus on modula-
tion through adolescence because this period is associated
with increased salience of value signals (Hartley & Somerville,
2015; Somerville, Jones, & Casey, 2010). Modulation is
tested with a reinforcement learning paradigm and accompa-
nying model-free and computational modeling analyses.

Methods
Emotion-Reward Manipulation of Learning

Participants (N=114, 8-22 years) completed a probabilistic re-
inforcement learning task containing emotional face stimuli
(Lundqvist, Flykt, & Ohman, 1998). On each of the 180 tri-
als, participants saw a pair of card decks with happy or fear
faces. They selected a deck, then received feedback (50 or 0
cents). Participants were paid a bonus based on their choices
and $20 for their time.

Critically, the decks corresponded to a 2x2 factorial design
(Figure 1) crossing emotion (happy vs. fear face) and reward
(75% vs. 25% reinforced). Consequently, there was differ-
ential congruence of emotion and reward information across
four conditions, which were pseudo-randomly interspersed
throughout the task.

Model-Free Analyses

To tease apart the impact of emotions and rewards on learn-
ing, we implemented a logistic mixed-effects model from the
ImerTest package (Kuznetsova, Brockhoff, & Christensen,
2017) in R. The accuracy of each choice made in the task
(i.e., select high reward face) was predicted by age, trial num-
ber, condition, and their interactions. Participant ID was asso-
ciated with a random intercept to account for repeated mea-
surements. The significance of the main effects and interac-
tions were assessed with analyses of deviance (type Il Wald
x? tests) using the Anova function from the car package (Fox
& Weisberg, 2019) in R.

Computational Modeling Analyses

We also implemented a series of standard temporal differ-
ence models (Sutton & Barto, 1998) in MATLAB. Only the
best-fitting model (determined by the lowest mean and me-
dian Akaike Information Criterion and highest number of par-
ticipants for whom the model explained the most variance) is
detailed here. Models were fit to participants’ data by maxi-
mizing the log posterior of their choices with the fmincon func-
tion.
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Figure 1: Orthogonal emotion-reward manipulation within a probabilistic reinforcement learning task.

Condition Model Specification After choosing deck d on
trial + and experiencing reward r;, participants updated their
current Q-value estimate Q;(d) according to a condition-wise
learning rate ot € {oy+F—, 0y +H—,0F+F—,0F g + and the
prediction error &; = r, — O;(d):

Qi1(d) = Qi(d) + 0%,

Q-values were initialized to .50 and were converted to
choice probabilities via a softmax function with an inverse tem-
perature parameter f3:

P(d;) = P*2(d) Z P+ (d)
deD

This model providing the best fit to the data suggests
that participants utilized different learning strategies, adjust-
ing their behavior to emotion-reward congruency, in each con-
dition.

Derived Q-Differences From the Condition Model, we
extracted trial-wise Q-value estimates, then computed Q-
differences within the decision pair by subtracting the Q-value
of the low reward face from the high reward face!. We imple-
mented another logistic mixed-effects model with the accuracy
of each choice predicted by age, condition, Q-differences, and
their interactions. Participant ID and trial number were asso-
ciated with random intercepts to account for repeated mea-
surements. Effects were assessed using Anova.

Results
Model-Free Results

We found main effects of age (p<.001) and trial number
(p<.001), as well as a two-way interaction between them
(p<.001); accuracy improved with age and time, but most
sharply for older participants. We also found a main effect of
condition (p<.001) and an interaction between age and con-
dition (p<.01; Figure 2A); accuracy was highest in H+F- trials
and lowest in F+H- trials, especially for younger participants.

Computational Modeling Results

We again found main effects of age (p<.001) and condition
(p<.001), with the same pattern of results as the model-free
'A Q-difference that reflects the reinforcement schedule of the

task should be more likely to produce a correct response on that
trial.

analyses. Additionally, we found a main effect of Q-differences
(p<.001); as expected, greater differences between Q-value
estimates were associated with improved accuracy. These
main effects were qualified by a two-way interaction between
condition and Q-differences (p<.001), a two-way interaction
between age and Q-differences (p<.001), and a three-way in-
teraction between age, condition, and Q-differences (p<.05;
Figure 2B). Ultimately, with increasing differences between
Q-value estimates, accuracy improved most in older partici-
pants across conditions (steeper coral lines). Moreover, when
the low reward face in a pair was erroneously valued above
the high reward face (i.e., Q-differences were near -1), older
participants achieved greater accuracy in the H+F- condition
while younger participants did not achieve accuracy gains in
this condition relative to the others (gold vs. silver circles).
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Figure 2: A. Learning improves with emotion-reward
congruency most in younger participants. B. When Q-value
estimates are mis-calibrated, emotion-reward congruency
recovers accuracy most in older participants. Shading
represents 95% confidence intervals around fitted lines.

Conclusions

In sum, this study characterizes age-related changes in the
contributions of incidental emotion and integral reward infor-
mation on learning with model-free and computational model-
ing analyses. Learning improves with age, across time, and
with emotion-reward congruency; the latter is particularly ob-
served in children. Differences in Q-value estimates extracted
from the best-fitting Condition Model enrich the behavioral re-



sults by uncovering a potential learning strategy. When Q-
value estimates are mis-calibrated to the reinforcement sched-
ule of the task, adults are more accurate than children and
adolescents in the H+F- condition. Consistent with previous
research indicating that diverse, flexible, and sophisticated
choice strategies are increasingly adopted with age (Jacobs &
Klaczynski, 2002), we show that while in a congruent emotion-
reward environment, adults may adaptively rely on emotion
information to make more optimal reward decisions.
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