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Abstract

Understanding the functional landscape of neurons is
crucial for developing a taxonomy of neuronal cell types.
Recent work proposed an approach to identify functional
cell types by learning a predictive model that approxi-
mates the input-output function of a population of neu-
rons and represents each neuron’s function by an em-
bedding. These neurons’ embeddings have been used
to investigate the landscape of cortical computation in
the early visual system, but it remains unclear how the
structure of the embedding space depends on the de-
sign choices of the predictive model. There were two ma-
jor differences in architectures: (1) a change of spatial
sampling strategy for neurons receptive field; and (2) us-
ing dynamic video stimuli instead of static images. Here
we investigate the impact of such design choices on the
functional landscape in the mouse primary visual cortex.
We find that strong L1 regularization of the final linear
layer, essential for earlier models, is vital for structured
embeddings, even with more recent architectures that
do not require regularization to achieve strong predictive
performance. Varying the backbone architecture did not
significantly impact the embeddings structure. Overall,
our work is an important step towards interpretable brain
modeling and taxonomy of cell types in the visual system.
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Introduction
Recent work proposed a framework for functional cell type
identification (Ustyuzhaninov et al., 2022; Tong et al., 2023).
The idea is to train a deep neural network with a two-stage ar-
chitecture (core + readout; Fig. 1) to predict how a large pop-
ulation of neurons responds to arbitrary visual stimuli (Klindt,
Ecker, Euler, & Bethge, 2017). The core is shared among
all neurons and maps the visual input to a shared feature
space (Fig. 1, left). From this feature space, the readout pre-
dicts a neuron’s response by taking a (neuron-specific) linear
combination (Fig. 1, right). These linear readout weights can
then be thought of as an embedding of the neuron’s input-
output function and have been used to map the landscape
of neuronal function in the visual cortex (Ustyuzhaninov et
al., 2022; Wang et al., 2023). However, the organization of
the resulting embedding space appears to depends on ar-
chitectural choices: earlier work (Ustyuzhaninov et al., 2022)
showed a clustered embedding space where neurons in high-
density modes share functional properties, whereas more re-
cent, high-performing models result in much less structured
embedding spaces (Wang et al., 2023). Here we investigate
how architecture differences could cause these differences.

Methods
Model architectures. Neurons in primary visual cortex are
orientation-selective. To obtain neuronal embeddings invari-
ant to neurons’ preferred orientation, we use a rotation equiv-
ariant framework (Fig. 2) (Ecker et al., 2018). We compare



Figure 1: Core-readout framework. The core consists of four
convolutional layers and outputs a (y×x× f ) tensor, where x
is width, y is height, and f is channels. The readout selects a
receptive field location for each neuron and computes a linear
combination of the features to predict neuronal responses.
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Figure 2: Rotation-equivariant layer in the dynamic core.
We modified dynamic models from (Hoefling et al., 2022;
Vystrčilová et al., 2024) by making the space convolutions
rotation equivariant. Each of the f learnt features is rotated
n times by 360/n degrees, resulting in f · n output channels.
Batch norm is applied across f dimensions only. Scale and
bias of the last layer’s batch norm are not trainable as this
would interfere with the readout regularisation.

two types of readout mechanism, both of which disentangle
the readout into a spatial component representing the neu-
ron’s receptive field location and a vector of feature weights –
the neuron’s embedding, which represents its nonlinear com-
putation. The earlier factorised readout (Klindt et al., 2017)
learns a mask for each neuron. It requires strong L1 regu-
larisation to learn a sparse mask, and regularizes the spatial
mask jointly with the neuronal embedding. The more recent
Gaussian readout (Lurz et al., 2020) represents each neu-
ron’s receptive field location as (x,y) coordinates and does
not necessarily require regularization. Here we explore how
the strength of regularisation γ affects both readouts. An-
other architecture choice is the regularization of the convo-
lution kernels in the core. We investigate two: smoothness
via a Laplace filter (γinp) and group sparsity (γgroup) (Ecker et
al., 2018). After training, we aligned embeddings to ensure
rotation invariance (Ustyuzhaninov et al., 2019) and clustered
them using k-means with 30 clusters.
Training data. The static model was trained on responses to

natural images of seven mice from the Sensorium Competition
2022 (Willeke et al., 2022). For the dynamic model, we used
the responses to natural video of ten mice from the Senso-
rium Competition 2023 (Turishcheva et al., 2023). Our models
account for behavioural activity (locomotion speed, pupil dila-
tion), a known modulator for neuronal responses, by adding
the behavioural variables as input channels to the core.
Evaluation. Following Turishcheva et al. (2023), we use
single-trial correlation (ρst). ρst is computed independently
per neuron and then averaged.

Results

First, the degree of clustering of the embeddings depends pri-
marily on the strength γ of readout regularisation, not the type
of readout (Fig. 3). However, this comes at a cost of decreas-
ing performance (Fig. 3 E). Second, neither making the core
dynamic (Fig. 4) nor varying the core regularization hyperpa-
rameters (Fig. 5) affects the presence of high-density modes.

Figure 3: t-SNE in static case. A–D: Models with 8 channels,
8 rotations. t-SNE following Kobak and Berens (2019). 14000
neurons, 2000 per animal, same neurons are used across pic-
tures. Each color corresponds to a cluster from k-means. A:
Factorised readouts with best performing regularisation. B–D:
Gaussian readouts. E: ρst score.



Figure 4: t-SNE in dynamic case. A–D: 10 animals, 1000
neurons per animal. 16 channels, 8 rotations and gaussian
readouts. A: full 3d convolutions (γ 500), B–D: factorised con-
volutions. E: ρst score. As in the static case, readout regular-
isation induces structure at the cost of performance.

Figure 5: Regularization of the core. Two different regular-
izers have been employed for the convolution kernels of the
core: smoothness via a Laplace filter (γinp) and group spar-
sity (γgroup) (Ecker et al., 2018). A–B: Changing γinp. C–D:
Changing γgroup. Both don’t influence the presence of density
modes or performance. All models with Gaussian readout and
readout regularisation γ = 100.
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