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Abstract
Biological agents live in a dynamic world and can exploit
structure in their environment to improve the efficiency
of learning. Previous work has yielded normative learn-
ing algorithms that prescribe learning strategies for spe-
cific environmental structures, but leave open the ques-
tion of how humans and animals might infer the structure
of their current environment. In this project, we propose
an optimal theoretical model of learning the structure of
varying environments. Specifically, we define learning the
structure of change as putting a prior on the transition
matrix of a hidden Markov model and using observations
to update that prior with Bayes rule. With minimum as-
sumptions imposed on the generative model of the en-
vironment statistics, we test our model in four different
environments and find signatures of context-appropriate
behavior previously observed in humans. Our work
proposes the first unifying model of adaptive learning
through experience in complex temporally structured en-
vironments.
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Past research in human learning and decision making,
ranging from systems neuroscience to neuroeconomics, has
suggested that people adaptively adjust learning in response
to a changing environment. Bayesian models in particular,
have been successful to provide insight into learning adjust-
ments in a given environment. Nevertheless, we still lack an
understanding of how people, or even algorithms, might come
to understand the underlying temporal structure of different
environments without explicit instruction. In this extended ab-
stract, we first explain the general framework of the tasks
we studied, then explain our model, the Hierarchical Dirich-
let structure learner (HDSL) and lastly present the results of
the modeling.

We consider an online prediction task in which a stream of
data points xt arrive at discrete time points t, and the task of
the learner is to predict p(Xt |X1, ...,Xt−1). We generate tasks
by using a hidden Markov model. Specifically, we simulate
four canonical statistical structures by using four types of tran-
sition probability matrix of the HMM where the rows are prob-
ability of transitions from state Zi to state Z j with Z denoting a
categorical “state” (Figure 2A).

Our modeling approach consists of choosing an appropri-
ate prior for prediction of outcome of a new trial and using
Bayes rule to update that prior with each new observation. We
use a Hierarchical Dirichlet process to generate the transition
probability matrix of our HMM, enabling our model to scale to,
in principle, an infinite number of states.

We generate the prior from Hierarchical Dirichlet Process in
three steps:

1) first we draw a vector β from a Dirichlet Process (DP)
where ∑i βi = 1. The vector β is called the global transition
probabilities and denotes the probability of each state in the
hidden Markov model.

Figure 1: We studied four canonical temporal structures of-
ten examined in human empirical studies: A) change points,
B) oddballs, C) reversals and D) sequences. Each structure
is defined by qualitative features of the state transition matrix
(left) which gives rise to discontinuities in observations over
time (right). Though each task incorporates discontinuous
temporal dynamics, they each elicit unique learning strategies
in human participants and normative models.

We generate these probabilities via a stick-breaking con-
struction where we recursively draw a random variable β′

k from
Beta(1,γ), Higher values of gamma results in smaller broken
stick portions and higher probability of new states in the future,
thus this hyper parameter would determine model complexity.

2) When a new state is created, we generate the corre-
sponding row in the transition probability matrix T by using the
original β vector as the base of a second DP :

Tj ∼ DP(α,β) (1)

Where α is the concentration parameter and β is the base
vector of the Dirichlet process. To generate rows of the transi-
tion probability matrix according to we use a Chinese restau-
rant process where the probability of transitioning from each
state i to previously visited state j is s:

P(Zt = j|Zt−1 = i) =
αβ j +ni j

αβ+N
(2)

where ni j is the number of previous transitions from state i to
j and N is the total number of transitions (i.e. trials) observed
so far. If j is a new state, the probability of transitioning to it is
given by:

P(Zt = j|Zt−1 = i) =
αβ j

αβ+N
(3)

3) Lastly, to control the dynamics of self transitions, we take a
weighted average of the transition matrix obtained from steps
1 and 2 and the identity matrix of the same size ( i.e. a ma-
trix with ones on the diagonal and zeros everywhere else),
where the weight of the second matrix is η. The third hyper
parameter of the HDP, η, is seen as a persistence factor that
favors higher probabilities of self-transitions ( the diagonal of



Figure 2: Graphical model of the hierarchical Dirichlet pro-
cess prior described in the text. B) Gamma and Alpha act as
inverse variance-like hyper parameters. Example draws from
a 3 dimensional DP: 1) Top row: In the first level DP, gamma
controls the overall probability of transitioning to each discrete
state 2) Bottom row: alpha controls the similarities of draws
from the second DP to one single draw from the distribution in
top row, middle panel. Thus, alpha controls how similar each
column of the transition matrix is to all of the others.

the transition probability matrix). The generative process de-
scribed here is depicted in the graphical model in Figure 2
B.

For making inference on the generative model explained in
previous section, we used an online particle filtering approach
for approximating the posterior at each time step. Specifically,
we start with t=1 and n equally weighted particles uniformly
distributed on an equally spaced 5-dimensional grid of the
free parameters of the model. Each particle is identified by
a unique combination of free parameters = {σ2

n,σ
2
d ,α,γ,η}.

Each particle is then copied p times. These copies share the
same hyper parameters and, as a group, are used to approx-
imate a probability distribution over the sequence of states.
The inference model observed task data one trial at a time,
using standard particle filtering equations and our inverted
generative model for learning, and model predictions were ex-
tracted as the maximum likelihood estimates of the underlying
mean on the upcoming trial.

We first show that the model is able to learn all of the four
prototypical tasks compared to other existing models in the lit-
erature (Figure 3). But good performance in the tasks doesn’t
necessarily mean the model is showing adaptive behavior.
For example, in many tasks, heuristics can achieve good per-
formance without taking any of the underlying environmental
structure into account. Thus, we analyzed the qualitative sig-
natures of adaptive behavior for each of the task types and
showed that the model’s reaction to change is consistent with
learning the temporal structure of each task (Figure 4).

How biological agents are able to learn the underlying
structure of a changing environment is still unknown. We are
first to provide a generalized Bayesian optimal model that is
able to learn temporal structure of different kinds of environ-
ment statistics in a unifying way.

Figure 3: The results of the online Bayesian inference model
with a HDP prior in the four different task types studied here.
A) The outcome locations (0-300) on each trial is depicted in
red circles with the full predictive distribution (the heat map)
and the model prediction based on the maximum value of
the predictive distribution (solid black line) for oddball, change
point, reversal and sequence learning tasks, comparing early
trials (first 20 trials) and late trials (last 20 trials) B) Com-
parison of the performance of our model with: three models
with fixed learning rates and Bayesian models optimal for the
changepoint and oddball tasks. Even though some models
might perform better on a single task, our Bayesian model
with the HDP prior does well across all of the tasks.

Figure 4: Our Bayesian model with the HDP prior shows qual-
itatively similar behavior previously observed in human partic-
ipants. Namely, a high learning rate after change points (B)
but not after oddballs(A). Gradually decreasing error (defined
as the difference between prediction and outcome mean) in
the reversal learning task (C) and learning to predict the next
trial mean instead of current trial outcome in the sequence
learning task (D).
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