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Abstract 

By adulthood, humans can rapidly identify objects from 
sparse visual displays and do so across disruptions to 
the object’s appearance. However, little is known about 
the development of these abilities. Here, we examined 
the robustness of children’s (3 to 5 years) recognition 
abilities using a challenging object recognition task 
which required them to identify rapidly presented objects 
(100 - 300 ms; forward and backward masked) that had 
complete, perturbed, or deleted contours. To shed light 
on the mechanisms underlying their recognition abilities, 
we compared their performance to biologically plausible 
deep neural networks (DNNs) with feedforward or 
recurrent architectures which were trained with either 
curated or variable image sets. We also characterized the 
gaps between child and machine vision by comparing 
children to performance optimized models. We found 
that even the youngest children could identify objects at 
high speeds when object contours were perturbed or 
deleted. Analyses of DNN performance revealed that 
both recurrence and variable visual experience were 
crucial for improving recognition accuracy, though they 
generally performed worse than children. These findings 
suggest that young children’s visual recognition abilities 
are fast and robust, but the mechanisms underlying 
these abilities are not understood well enough to 
implement into current models.  
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Introduction 

Humans rapidly extract meaning from sparse, and 
often incomplete, visual information. Indeed, by 
adulthood, participants can identify objects presented 
as quickly as 100 ms (Grill-Spector & Kanwisher, 2005) 
and can do so even when object features are distorted 
or partially occluded (Biederman & Cooper, 1991; 
Murray et al., 2001). When and how do such recognition 
abilities develop in childhood? 

In adults, robust visual processing abilities are 
supported primarily by the ventral visual pathway 
(DiCarlo et al., 2012). When the object properties are 
clearly visible, a single feedforward pass through the 
ventral hierarchy is sufficient to determine the object’s 
identity or category (Serre et al., 2007). However, in 
more challenging cases, such as when the object parts 
are distorted or partially occluded, recurrent processes 
are needed to disambiguate the object’s identity (Kar et 
al., 2019; Tang et al., 2018). Thus, recurrent processing 
may be one neural mechanism that is important for the 
development of robust recognition abilities. 

Another, not mutually exclusive, mechanism is that 
extensive variability in children’s visual experience 
allows them to recognize objects across a range of 
contexts. Consistent with this possibility, DNNs with 
more variability in their training data showed more 
human-like performance on object recognition tasks 
(Bambach et al., 2017; Geirhos et al., 2018). 

However, directly testing which mechanisms underlie 
children’s visual recognition abilities is challenging. 
First, few studies have tested children in the same 
challenging conditions typically used with adults (as 
well as non-human primate and machines), which 
makes mechanistic comparisons across age (and 
organism) difficult (Ayzenberg & Behrmann, 2023). 
Second, young children’s limited attentional capacities 
make it challenging to conduct long or complex 
neuroimaging experiments, frequently leaving the 
neural mechanisms underlying visual recognition 
unclear (Grill-Spector et al., 2008). Finally, researchers 
are not ethically able to manipulate or restrict a child’s 
visual experience, making it difficult to estimate what 
kinds of visual experiences are crucial for developing 
robust recognition abilities.  

Thus, in the current study we set out to accomplish 
three goals. (1) Determine the upper-bound of 
children’s abilities using a challenging object 
recognition task. We did this by presenting 3- to 6-year-
olds with a task that required them to identify rapidly 
presented object outlines (100 - 300 ms; forward and 
backward masked) with complete, perturbed, or deleted 
contours (Fig1A-B). (2) Identify possible mechanisms 
that support recognition abilities in young children. To 
achieve this goal, we compared children to DNNs with 
either feedforward or recurrent architectures that were 
trained on either curated images, or images with greater 
variability. (3) Provide a benchmark by which to identify 
existing gaps between children and DNNs. To this end, 
we compared children to performance optimized DNNs.  

Methods 

Participants. We tested 128 children (Mage = 4.62, 
Range = 3.05 – 5.95; 64 females) in one of three 
(randomly assigned) contour conditions (complete, 
perturbed, deleted; n = 42 per condition). 

Models. For biologically plausible models, we 
implemented vonenet with either feedforward 
(vonnet_ff) or recurrent (vonenet_r) architectures 
(Dapello et al., 2020) and trained them on either ecoset 
(Mehrer et al., 2021) or a stylized version of ecoset 
(Geirhos et al., 2018). For the performance optimized 
models we tested a Vision Transformer (ViT) 
(Dosovitskiy et al., 2020) and ConvNext (Liu et al., 
2022). 

Child testing procedure. Children were tested with a 
two-alternative forced-choice procedure where they 
had to identify a rapidly presented stimulus that was 
both forward and backward masked (Fig 1B). Duration 
of stimulus displays varied between 100-300 ms, which 
was determined via a titrated procedure.  



 
Fig 1. (A) Example stimuli from the three contour conditions. (B) Trial 
procedure used with children. (C) Child performance in each condition 
at each stimulus duration. Dotted line indicates chance (0.5). 

Model testing procedure. Models were evaluated by, 
first, training a classifier using the feature activations 
from the penultimate layer of each model on naturalistic 
images of each object and, then, testing them on each 
stimulus display in a pairwise fashion (e.g., trained on 
photographs of airplanes and cars; tested on the 
perturbed airplane stimulus; 20-fold cross-validation). 
To minimize the possibility that our evaluation decisions 
impacted DNN performance, we tested models with six 
different classifiers and parametrically varied the 
number of images used to train the classifier (5 to 300). 
The best performing model across all classifier 
variations was compared to children. 

Results and Discussion 

Children. Overall, children accurately identified 
objects in all conditions even at the fastest speeds (Fig 
1C). When examining performance separately by age 
and condition, we found that 4- and 5-year-olds 
performed above chance in every condition and all 
durations (ps < .038, ds > 0.63). By contrast, 3-year-
olds performed above chance at all durations of the 
complete condition (ps < .007, ds > 1.00), but only at 
200 ms in the perturbed condition (p = .001, d = 1.27) 
and 250 ms in the deleted condition (p = .007, d = 0.98). 
These findings suggest that by 4 years-of-age, children 
rapidly extract meaning from sparse visual displays – 
even when information is missing. Even 3-year-olds  
performed above chance in many cases. 

Models. Amongst the biologically plausible models, 
recurrent models (vonenet_r) generally outperformed 
feedforward models (vonenet_ff), and models trained 
on a more variable image set (stylized-ecoset) 
outperformed those trained on a curated image set 
(ecoset). These findings are consistent with the 

hypothesis that recurrence and variable visual 
experience is crucial for robust visual recognition. 
Interestingly, models with recurrent architectures, such 
as vonenet_r_ecoset, performed as well as, or better 
than, performance-optimized models, such as 
ConvNext. This finding suggests that smaller models 
with biologically plausible architectures (vonenet_r: 
55m params vs. ConvNext: 198m params) trained on 
smaller, but more ecologically valid image sets (ecoset: 
1.5m images vs. ImageNet: 14m images) can achieve 
competitive performance on visual recognition tasks.  

DNNs vs. Children. Children and models were 
compared on the basis of overlapping confidence 
intervals. Overall, models primarily matched the 
performance of the youngest children, but only when 
children were tested with the fastest durations or most 
challenging conditions (deleted contours). They rarely 
matched the performance of 4- or 5-year-olds at any 
speed or condition. Thus, although recurrence and 
variable visual experience improves the performance of 
DNNs on visual recognition tasks, it is largely 
insufficient to match the recognition abilities of young 
children.  

 
Fig 2. Performance of children and models in the (A) complete, (B) 
perturbed, and (C) deleted contour conditions. Child data for each 
age was aggregated into fast (100 ms & 150 ms) and slow (200 ms 
& 250 ms) stimulus durations. 

Conclusion 

We sought to understand when and how robust visual 
recognition abilities develop in young children. Our 
results showed that young children succeed at 
identifying objects from sparse visual displays, at 
speeds as fast as 100 ms even when objects have 
disrupted contour information. By contrast, biologically 
plausible and performance-optimized DNNs rarely 
matched the visual recognition abilities of children. 
Altogether, these findings suggest that young children 
already have robust recognition capacities, but there 
remain large gaps in our ability to approximate these 
processes in current computational models. 
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