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Abstract

Recent theoretical and experimental work in neuro-
science has focused on the representational and dynam-
ical character of neural manifolds [e.g. (Ebitz & Hay-
den, 2021; Saxena & Cunningham, 2019; Mante, Sussillo,
Shenoy, & Newsome, 2013; Cunningham & Yu, 2014)].
These neural manifolds are subspaces in neural activ-
ity space wherein many neurons coactivate. Importantly,
neural populations studied under this “neural manifold
hypothesis” are not cleanly divided into separate neural
populations. Instead, many neurons contribute to most
manifolds in some way or another. Here, we leveraged
RNNs as a model system to study the character of dis-
crete neural populations. We used a community detection
method from network science to produce a partition that
separates neurons into distinct populations. These parti-
tions allowed us to ask the following question: do these
discrete boundaries between neural populations matter
to the system? We found evidence that these boundaries
do matter to the system. First, we found that these bound-
aries neatly divide the representational content and role
of neurons. Next, we found that these boundaries can be
directly inferred from features of the weight matrix and
we corroborated this result with structural and functional
imaging data from mice and humans. Finally, we found
that the dynamics of these RNNs respected the bound-
aries of neurons into distinct populations.
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Introduction
Here, we explore the importance of boundaries between dis-
crete neural populations. To do this, we used recurrent neural
networks (RNNs) trained on systems neuroscience tasks as
a model system to ask the question: Are boundaries between
neural populations important to the system? (György Buzsáki,
2019). Our investigations broadly fall into three categories: (1)
representation and selectivity of neural populations, (2) origin
of neural population, and (3) dynamics of neural populations.

We demonstrate many of our main results on an RNN
trained to perform a perceptual decision-making task (Molano-
Mazon et al., 2022). This task presents the RNN with two stim-
uli drawn from normal distributions with different means. The
task of the RNN is to identify the distribution with the greater
mean. This requires the RNN to track previous values of both
stimuli and to compare them. The task-relevant variable for
this task is the cumulative difference between the means of
the two input stimuli distributions (hereafter referred to as cu-
mulative ∆ inputs). After a fixation period, the RNN makes its
decision based on the relative activity of two output neurons.
The output neuron with the greatest activity corresponds to
the RNNs decision (see Fig. 1a for a schematic of this task).

Representation and Selectivity
In this section, we ask if boundaries between discrete neu-
ral populations (Fig. 1b) also neatly divide the selectivity of
neurons that represent different task-relevant information. We
find that these boundaries not only divide neurons based on
their representational profiles (Fig. 1c-e), but lesioning output
connections on one side of this boundary only effects task tri-
als requiring the representations of that population (and vice
versa; Fig. 1f-h).



Figure 1: Representations are unique to discrete neural pop-
ulations.

Origin
In this section, we ask if we can find features of the neuronal
connection weights that create boundaries between neural
populations. We find that neural population boundaries are
determined by the sign (+/-) of incoming connection weights.
Incoming connection weights can be thought of as living in an
N dimensional space, where N is the number of input neu-
rons. For a neuron with two input neurons, its neural popula-
tion will be determined by the quadrant of the input connection
weights in this space (Fig. 2a-d). For a neuron with three in-
put neurons, its neural population will be determined by the
octant of the input connections in this space. The number of
sectors (quadrants/octants) scales as 2N . As N increases, we
find that the boundary between nearby sectors collapses and
the neurons in combined sectors form a larger neural popu-
lation. We continue to investigate the exact reason for this
kind of boundary collapse so that we can predict the nearby
boundaries that will collapse.

Figure 2: Origins of neural populations when N = 2 input neu-
rons.

Dynamics
In this section, we ask if the dynamics of RNNs respect the
boundaries between discrete neural populations. In multiple
analyses, we find evidence that neural dynamics do respect
neural population boundaries. These analyses can be subdi-
vided into three subsections: (1) neural dynamics for compu-
tation, (2) neural dynamics following neuronal lesions, and (3)
neural dynamics defined by higher-order nullclines.

Neural dynamics for computation
Input neuron connection weights define neural population
boundaries that are projected onto recurrent neurons. Here,
we use those boundaries to determine a lesioning protocol

(Fig. 3e) for recurrent neuron connections. More specifically,
we sought to answer the following question: Do lesions on ei-
ther side of these boundaries have specific/unique effects on
dynamics for computation?

To answer this question, we created a perturbation
paradigm for RNNs trained to perform the perceptual decision-
making task, wherein we presented one or the other input
neuron with a high-value of input stimulus (Fig. 3a). Trained
RNNs respond by maintaining activity far away from a deci-
sion boundary, effectively performing a dynamic computation
for the current value of cumulative ∆ inputs (Fig. 3b-c).

After lesioning connections on one side of the boundary, we
found that computations for maintaining stimuli 1 information
were destroyed, but not computations for maintaining stimuli 2
(and vice versa; Fig. 3e-h).

Figure 3: Lesions destroy specific neural computations.

Neural dynamics following neuronal lesions

In this section we investigate the effects of lesions to recurrent
neurons on the vector field of the RNN. Vector fields represent
the global dynamics of a system by sampling from the direc-
tional forces or velocities at each point in space, thus offering
a comprehensive view of how the system evolves over time
(Fig. 4a). We measured the effects of lesions to these vec-
tor fields (flow distance;Fig. 4b,d) and compared these effects
across all neurons. Overall, we found that lesions to neurons
within the same population boundary have very similar effects
on the dynamics of the vector field, whereas neurons in two
separate populations have different effects on the vector field
(Fig. 4c,d).

Figure 4: Lesions within a population disrupt dynamics in a
similar way.



Neural dynamics defined by higher-order nullclines
In this section, we approximate higher-order nullclines for
large RNNs and compare them with neural population struc-
ture. Nullclines are lines/surfaces where the derivative of a
single state variable is equal to zero, and where all the null-
clines intersect, they form fixed points (Fig. 5a). We approx-
imated higher-order nullclines (where all nullclines intersect
except for one; Fig. 5b), and we found that the similarity of the
higher-order nullclines was reasonably circumscribed by the
boundaries between neural populations(Fig. 5d,e).

Figure 5: Higher-order nullclines are similar within neural pop-
ulations.

Conclusion
We conclude that neural population boundaries are important
to the system in a variety of ways. We therefore expect that by
using methods that approximate these boundaries alongside
neural manifold methods that are usually used (like principal
component analysis), we will gain additional insights into the
dynamics of computation and representation in brains.
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