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Abstract
Despite its key role in the development, maintenance, and
treatment of anxiety disorders, the detailed mechanisms
of human avoidance learning remain elusive. Here, we
report on a novel approach-avoidance learning paradigm
that requires participants to learn associations between
complex visual stimuli and combined positive and neg-
ative reward states. Using an agent-based behavioral
modeling approach, we show that a Rescorla-Wagner
learning-based agent with a prior expectation bias pa-
rameter best explains the learning behavior of 50 partic-
ipants, paving the way for a more fine-grained computa-
tional understanding of the etiology of anxiety disorders.

Keywords Avoidance learning, clinical psychology, behavioral
modeling, Rescorla-Wagner learning, visual foraging

Introduction
From the earliest age, humans rely on the ability to learn asso-
ciations between differently valenced stimuli and rather com-
plex environmental contexts, allowing for the avoidance of po-
tentially (life-)threatening situations (Krypotos et al., 2015). In
the absence of real dangers, however, learned avoidance re-
sponses no longer represent adaptive reactions and may in
contrast result in substantial psychological impairments. In
fact, excessive avoidance represents a core symptom of anx-
iety disorders, which are among the most common mental
disorders worldwide (World Health Organization, 2017, 2004;
American Psychiatric Association, 2013). Despite its key role
in theories concerning the development, maintenance, and
treatment of anxiety disorders, the detailed mechanisms un-
derlying human avoidance learning remain elusive (Seriès,
2020).

Two factors are generally believed to hamper our under-
standing of avoidance learning to date. First, most stud-
ies have relied on the use of overly simplistic and unam-
biguous stimuli typically associated with only either positive
(e.g., monetary gains) or negative rewards (e.g., electrical
shocks). However, in real life, maladaptive avoidance behavior
becomes most evident in situations of combined positive and
negative reward states (e.g., Lissek et al., 2006; Beckers et al.,
2013). Second, computational approaches that bear the po-
tential to dissect the fine-grained psychological mechanisms
of avoidance learning are only beginning to be employed in
the fields of clinical psychology and psychiatry (Mkrtchian et
al., 2017; Smith et al., 2021; Sharp & Eldar, 2019; Yamamori
et al., 2023).

To contribute to the understanding of avoidance learn-
ing, we here report on a novel approach-avoidance learning
paradigm that requires participants to learn associations be-
tween complex visual stimuli and combined positive and neg-
ative reward states while also actively engaging with the ex-
perimental environment. We show that a Rescorla-Wagner
learning-based agent with a prior expectation bias parame-
ter best explains the learning behavior of 50 participants on
this paradigm. For formal and implementational details of this
work, please refer to https://osf.io/bjdse/.

Behavioral Paradigm and Descriptive Analysis
Behavioral Paradigm On each trial of the experiment, par-
ticipants performed a foraging task on one of the four visual
search fields, each presented 10 times in a randomized order.
On each visual search field, participants were requested to
uncover coins by clicking on each of the 16 presented blue-
colored circles while simultaneously being at risk of receiv-
ing electrical shocks. Each visual search field was character-
ized by a unique spatial pattern of blue-colored circles, repre-
senting a certain experimental condition. Specifically, within-
subjects factors profit (low: two coins, high: six coins) and
punishment (low: 0.1 probability of electrical shocks, high: 0.8
probability of electrical shocks) were manipulated in a 2 x 2-
factorial manner (Figure 1a). Participants were asked to learn
the associations between visual search field patterns and ex-
perimental conditions. As a behavioral read-out of this learn-
ing process, participants indicated the experimental condition
associated with the visual search field after each trial (Fig-
ure 1b). In line with the reinforcement learning terminology,
profits, punishments, and experimental conditions will here-
inafter be referred to as positive rewards, negative rewards,
and reward states, respectively (Sutton & Barto, 2018).
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Figure 1: a Experimental paradigm. b Association of visual
search fields with experimental conditions.

Descriptive Analysis Participants achieved an overall av-
erage accuracy of 67.95% (± 2.1 SEM) for identifying the
reward states associated with the visual search fields (Fig-
ure 2a). The average accuracy increased over trials from
around 38% to around 74%, indicating the successive acqui-
sition of the correct associations (Figure 2b).
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Figure 2: a Overall average (dashed line) and average reward
state-specific accuracies across n = 50 participants and T =
40 trials. b Average trialwise accuracy of n = 50 participants.
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Agent-Based Behavioral Modeling
To model the participants’ trial-by-trial behavior, we formu-
lated and validated nine agent models that implement differ-
ent mechanisms for deciding on a given visual search field
pattern-reward state association based on the currently avail-
able information only and/or successively updated expected
reward value estimates. When combined with a behavioral
model, the agent models emit the latent reward state indica-
tions as actions and their relative model plausibility can be
evaluated in light of the participants’ experimental data.

Agent Models We designed nine agent models that we de-
note by A0 to A8 (Table 1). Specifically, agent A0 served as
a control agent, implementing a uniform random choice strat-
egy. Its general structure is given by A := (D,φ, p(δt)), where
(D,φ, p(δt)) denotes the agent’s decision model, comprising
the decision set D := {0,1,2,3} of possible reward states,
the agent’s decision value function φ, and the agent’s deci-
sion distribution p(δt). Agents A1 and A2 implement heuris-
tic choice strategies that only consider the reward information
directly observable on a given trial. Their general structure
takes the form A := ((D,φ,δ),rt), where (D,φ,δ) refers to the
agent’s decision model, including the agent’s decision function
δ, and rt denotes the trialwise observed positive and nega-
tive reward. Agents A3 to A7 implement a Rescorla-Wagner
learning-based decision strategy. Their general structure is
given by A := ((M,ψ),(D,φ,δ),(ot ,rt)), where (M,ψ) de-
notes the agent’s learning model, (D,φ,δ) denotes the agent’s
decision model, and (ot ,rt) refer to the trialwise visual search
field pattern and reward observations. Importantly, agents
A3 to A7 differ in their learning model parameters and ini-
tial expected reward values estimates (Table 1). For example,
agents A5 and A7 include a prior expectation bias parame-
ter that accounts for the fact that participants were explicitly
informed that they can only judge the risk of receiving a neg-
ative reward after several trials, potentially biasing their deci-
sions for high negative reward states early in the experiment.
Agent A8 implements a hybrid heuristic and Rescorla-Wagner
learning-based decision strategy by learning an expected neg-
ative reward value estimate and deciding on the positive re-
ward component based on the trialwise observation.

Behavioral Models The agent models were embedded in
a statistical inference framework that transforms the agents’
decisions into observable actions that correspond to the par-
ticipants’ indicated reward states over trials. For the control
agent A0, the behavioral model corresponded to its stochas-
tic decision model, while for agents A1 to A8 the behavioral
model took the form of a softmax action distribution with post-
decision noise parameter τ > 0.

Parameter Estimation & Model Comparison Model pa-
rameters were estimated using a maximum likelihood ap-
proach. Specifically, a constrained Nelder-Mead optimization
algorithm was applied with the parameter constraints set to
η,ηp,ηn,τ ∈ [0.01,2], and π ∈ [−1,1] (Virtanen et al., 2020).

Table 1: Agent model space

Agent Learning model parameters Decision model
dependencies

A0 - -
A1 - rp

t
A2 - rp

t , rn
t

A3 Learning rate η µ̂o
rp , µ̂o

rn

A4 Positive reward learning rate ηp,
Negative reward learning rate ηn

µ̂o
rp , µ̂o

rn

A5 Learning rate η,
Prior expectation bias π

µ̂o
rp , µ̂o

rn

A6 - µ̂o
rp , µ̂o

rn

A7 Prior expectation bias π µ̂o
rp , µ̂o

rn

A8 Negative reward learning rate ηn rp
t , µ̂o

rn

Notes. rp
t and rn

t denote the trialwise observed positive and negative
reward, respectively. µ̂o

rp and µ̂o
rn refer to the expected positive

and negative reward value estimates for a specific visual search
field pattern observation o. Agent models A6 and A7 implement a
trial-adaptive learning rate instead of a free learning rate η.
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Figure 3: Model evaluation in light of the experimental data.
A0 to A8 denote different agent models. Model compari-
son based on a BIC values and b PEP. Note that in line
with Schwarz (1978), higher BIC values indicate higher model
plausibility.

To evaluate the embedded agent models in light of the par-
ticipants’ experimental data, participant-specific Bayesian In-
formation Criterion (BIC) values were computed according to
Schwarz (1978) and summed across all participants. In line
with the original formulation by Schwarz (1978), higher BIC
values indicate higher model plausibility. Moreover, BIC val-
ues of all agents and data sets were subjected to a random-
effects Bayesian model selection procedure using a Python
implementation of the protected exceedance probability (PEP)
approach (Stephan et al., 2009; Rigoux et al., 2014). Upon ap-
plying the agent-based behavioral modeling approach to the
experimental data, we generated artificial data to assess the
degree to which the models and parameter values were reli-
ably recoverable. Please refer to https://osf.io/bjdse/
for detailed information on these model validation results.

Model Comparison Figure 3 shows that, overall, agent A5
could account best for the observed behavioral data.

Conclusion
We show that a Rescorla-Wagner agent can explain human
behavior in a complex approach-avoidance learning task bet-
ter than random or heuristic agents. Given the task particu-
larities, we find that a single fixed learning rate and a prior
expectation bias parameter provide the most plausible agent
configuration. Our work contributes groundwork for the com-
putational dissection of approach-avoidance learning in com-
plex decision scenarios and emphasizes its context adaptivity.
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