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Abstract: 
Understanding the hidden (latent) states and structures 
that generate observations of the world is a fundamental 
aspect of cognition, wherein humans demonstrate ex-
ceptional proficiency in the ability to apply similar cogni-
tive strategies across superficially dissimilar contexts 
sharing the same latent structure. While previous efforts 
to understand the computational bases of these cogni-
tive strategies through cognitive modeling have largely 
focused on single contexts, here we take a novel ap-
proach which combines two tasks with the same reversal 
structure. Through cognitive modeling, we first show 
that humans use the same noisy hidden-state inference 
strategy across these superficially dissimilar tasks that 
require reversal learning. Then, using recurrent neural 
networks (RNNs) featuring either exact or noisy compu-
tations trained on the same tasks, we show that noisy 
RNNs – like humans – benefit from reusing the same la-
tent representations for solving the two tasks. Together, 
our findings underscore the significance of computation 
noise in constraining the use of mental resources, shed-
ding light on its potential functional role in cognition.  
Keywords: human; behavior; hidden-state inference; 
learning; computational modeling; recurrent neural 
networks 

Introduction 
The capacity to use the same efficient cognitive strat-

egies across diverse contexts is a defining characteris-
tic of human cognition (Collins & Frank, 2013; Lake et 
al., 2017). Humans have been shown to spontaneously 
generate and use latent states and structures, which 
can then be used across superficially dissimilar con-
texts (Collins, Cavanagh & Frank, 2014). However, the 
study of these hidden-state inferences through the lens 
of computational model parameters have had chal-
lenges (Eckstein et al., 2022) and are usually confined 
to specific paradigms (e.g., reinforcement learning; 
Franklin & Frank, 2020). By combining two tasks with 
the same reversal structure, manifested as either re-
wards of a reinforcement learning task or colors in a 
perceptual categorization task, we show that humans 
use the same noisy hidden-state inference strategy 
across these superficially dissimilar contexts, shown 
through behavior and parameter fits of a cognitive com-
putational model. Furthermore, the use of RNNs trained 
to perform both tasks offers evidence that this mecha-
nism may be the natural result of a constrained align-
ment of the cross-context latent structure when task 
performance is optimized in the presence of computa-
tion noise. 

Results 
Task. Two reversal-learning tasks generated from the 
same latent structure from which stimulus values are 
sampled (Figure 1a) dictates reward outcomes for one 
option in the two-armed reward-guided learning (bandit) 

task (Figure 1b) while simultaneously assigning percep-
tual stimuli (i.e., colors) for a two-option perceptual cat-
egorization (fairy) task (Figure 1c). In the bandit task, 
participants learn to maximize their rewards by learning 
which of the two arms is more rewarding, while in the 
fairy task they infer from which bag an invisible fairy is 
currently drawing apples. For any participant, the trajec-
tory of the latent state of a block and reversal points of 
one task correspond identically to that of a block of the 
other task (72 trials per block; 4 blocks per task). The 
tasks differ since their stimuli are visually dissimilar (i.e., 
numeric rewards and colors between green and red) 
and that bandit task stimuli are outcomes of actions 
while fairy task stimuli are uncontrollable observations. 
After the behavioral experiment, participants also re-
sponded to the 16-item International Cognitive Ability 
Resource (ICAR) test (Condon & Revelle, 2014). 
Behavioral results. Participants (N = 149) achieved 
similar accuracy in both tasks (0.70 ± 0.01 in both tasks; 
z = 1.24, p = .215; across-task correlation r = 0.56, p < 
.001; Figure 1d). They also showed similar signatures of 
reversal learning (Figure 1d) and sensitivity to the value 
of the stimulus such that they tended to repeat actions 
when the current stimulus (reward or color) was in 
agreement with their previous choice (Figure 1e). A 
subset (N = 106) of this original group also performed 
the same task two weeks later in a retest session. 

Computational modeling results. The fitted parame-
ters of a variant of the hazard-rated Bayesian inference 
model with noisy inference (Glaze et al. 2015; Weiss et 

Figure 1: Behavioral task and human performance 



al., 2021) showed that while the parameters responsi-
ble for stimulus processing and choice policy differed 
significantly between the two tasks, parameters respon-
sible for inference did not. Furthermore, inference pa-
rameters, specifically the hazard rate and inference 
noise, showed interindividual stability across both tasks 
and sessions (Figure 2a). ICAR scores (here, used as 
a proxy measure of cognitive ability) solely predict the 
value of inference noise, negatively (p < .001 for all four 
regressions), but was not related to any other parame-
ter of the model in both bandit and fairy tasks at test and 
retest. Structural equation modeling (Figure 2b) showed 
that cognitive ability may be causally related to infer-
ence noise in both tasks through a hierarchical structure 
(h1, p > .989) that assumes a general cognitive precision 
across tasks (Drugowitsch et al., 2016) but also shows 
context adaptation (see also Lee, Rouault & Wyart, 
2023). This structural model was more plausible given 
the human data than alternative hypotheses assuming 
either context-agnostic or context-specific inference 
noise. 

Recurrent Neural Network results. Recurrent neural 
networks (RNNs) are often employed to study learning 
and meta-learning across domains (Barak, 2017; Shea-
han et al., 2021). However, interpreting derivative 
measures from networks and generating hypotheses 
from them may be challenging if they are not subject to 
biologically-plausible constraints (Pulvermüller et al., 
2021; Schaeffer, Khona & Fiete, 2022). To investigate 
the role of noise in inference stemming from shared 
constrained resources, we trained recurrent neural net-
works with saturating units of varying hidden layer (HL) 
sizes, constrained by noisy computations to reproduce 
the presence of noise in human inferences (Findling 
and Wyart, 2021). 

RNNs with hyperbolic tangent activation functions at 
the HL (configured as in Figure 3a) were trained to per-
form both tasks on newly generated blocks for each 
task, optimizing for task accuracy across the two tasks. 

Overall, exact RNNs outperformed noisy ones, where 
task accuracy declined as network size decreased (Fig-
ure 3b). To explore the mechanism underlying cross-
context latent-state inference, we examined the pres-
ence of shared representations during RNN inference 
via the cosine similarity of the first principal components 
(PC1s) of HL activations in each task. Both noisy and 
exact RNNs showed high PC1 cosine similarity. To de-
termine whether the use of shared latent representa-
tions for both tasks was critical to RNN inference, we 
trained RNNs to maximize task accuracy in an adver-
sarial fashion by aiming for a target cosine similarity of 
PC1s lower than the one achieved when unconstrained. 
Exact RNNs were minimally affected by this additional 
constraint. However, noisy RNNs suffered substantially 
reduced performance as hidden layer alignment de-
creased, with pronounced interactions with lower HL 
sizes (Figure 3b). 

Discussion 
Our investigation found that humans may be using 

shared inferential mechanisms across superficially dif-
ferent tasks with matched latent structures, and that 
their cognitive ability is linked with the precision of these 
inferences. Likewise, we found that unconstrained arti-
ficial RNNs – whether precise or noisy – demonstrated 
proficient performance in the two tasks. However, under 
computation noise constraints, RNNs required align-
ment of hidden-unit activations to perform both tasks at 
near-optimal performance. This second result indicates 
a necessity for shared representations of inference to 
accomplish optimal performance across tasks in the 
presence of computation noise. Together, these find-
ings suggest that understanding the human capacity for 
cross-context inference may be the result of optimiza-
tion of objectives given the presence of biological noise.  

Beyond biological plausibility, noisy RNNs have other 
advantages (Findling and Wyart, 2020). Noisy-trained 
RNNs were robust to internal perturbations (noise act-
ing as a form of functional regularizer), whereas their 
exact counterparts significantly declined in accuracy 
(Figure 3c). Further research may uncover other ad-
vantages (Ma, Yan & Tang, 2023) such as resilience to 
external uncertainties, along with disadvantages due to 
excessive computation noise (Tran et al., 2020). 

Figure 3: Effect of noise and alignment in RNNs 

Figure 2: Stability of inference parameters and struc-
ture of the relation between cognitive ability and noise 
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